通过预传输引导减轻再压缩下的隐写分析崩溃

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xin Li;Hongxia Wang;Jinhe Li
{"title":"通过预传输引导减轻再压缩下的隐写分析崩溃","authors":"Xin Li;Hongxia Wang;Jinhe Li","doi":"10.1109/LSP.2025.3612695","DOIUrl":null,"url":null,"abstract":"Current steganalysis primarily focuses on analyzing clean pre-transmission images, which we term Transmission-Prior Steganalysis (TPS), neglecting the performance degradation caused by lossy transmission channels. This creates a critical mismatch in real-world scenarios where modern JPEG-resistant steganography preserves message integrity despite aggressive recompression, whereas transmission-induced distortions largely compromise detection performance. We formally identify this problem as Transmission-Disturbed Steganalysis (TDS) and propose PGD-Net (TPS Guides TDS Network), a teacher-student framework that bridges transmission-prior knowledge and distorted-image analysis through dual alignment mechanisms. The framework simultaneously ensures prediction consistency through output distribution alignment and preserves discriminative features via structured relation alignment. Experimental results demonstrate great improvements in detection performance for existing steganalyzers when applied to distorted images. By establishing the first benchmark for quality-loss scenarios, this work addresses a new practical deployment challenge, further advancing the field toward robust real-world applications.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3814-3818"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Steganalysis Collapse Under Re-Compression via Pre-Transmission Guidance\",\"authors\":\"Xin Li;Hongxia Wang;Jinhe Li\",\"doi\":\"10.1109/LSP.2025.3612695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current steganalysis primarily focuses on analyzing clean pre-transmission images, which we term Transmission-Prior Steganalysis (TPS), neglecting the performance degradation caused by lossy transmission channels. This creates a critical mismatch in real-world scenarios where modern JPEG-resistant steganography preserves message integrity despite aggressive recompression, whereas transmission-induced distortions largely compromise detection performance. We formally identify this problem as Transmission-Disturbed Steganalysis (TDS) and propose PGD-Net (TPS Guides TDS Network), a teacher-student framework that bridges transmission-prior knowledge and distorted-image analysis through dual alignment mechanisms. The framework simultaneously ensures prediction consistency through output distribution alignment and preserves discriminative features via structured relation alignment. Experimental results demonstrate great improvements in detection performance for existing steganalyzers when applied to distorted images. By establishing the first benchmark for quality-loss scenarios, this work addresses a new practical deployment challenge, further advancing the field toward robust real-world applications.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3814-3818\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11174985/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11174985/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目前的隐写分析主要集中在分析干净的传输前图像,我们称之为传输-先验隐写分析(TPS),而忽略了由有损传输信道引起的性能下降。这在现实场景中造成了严重的不匹配,现代抗jpeg隐写术尽管进行了积极的再压缩,但仍保留了消息的完整性,而传输引起的失真在很大程度上损害了检测性能。我们正式将这个问题定义为传输干扰隐写分析(TDS),并提出了PGD-Net (TPS指导TDS网络),这是一个师生框架,通过双对齐机制将传输先验知识和失真图像分析连接起来。该框架通过输出分布对齐保证预测一致性,同时通过结构化关系对齐保持判别特征。实验结果表明,现有的隐写分析仪应用于畸变图像时,检测性能有很大提高。通过建立质量损失场景的第一个基准,这项工作解决了一个新的实际部署挑战,进一步推动了该领域向健壮的现实世界应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating Steganalysis Collapse Under Re-Compression via Pre-Transmission Guidance
Current steganalysis primarily focuses on analyzing clean pre-transmission images, which we term Transmission-Prior Steganalysis (TPS), neglecting the performance degradation caused by lossy transmission channels. This creates a critical mismatch in real-world scenarios where modern JPEG-resistant steganography preserves message integrity despite aggressive recompression, whereas transmission-induced distortions largely compromise detection performance. We formally identify this problem as Transmission-Disturbed Steganalysis (TDS) and propose PGD-Net (TPS Guides TDS Network), a teacher-student framework that bridges transmission-prior knowledge and distorted-image analysis through dual alignment mechanisms. The framework simultaneously ensures prediction consistency through output distribution alignment and preserves discriminative features via structured relation alignment. Experimental results demonstrate great improvements in detection performance for existing steganalyzers when applied to distorted images. By establishing the first benchmark for quality-loss scenarios, this work addresses a new practical deployment challenge, further advancing the field toward robust real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信