关注量子复杂性

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hyejin Kim, Yiqing Zhou, Yichen Xu, Kaarthik Varma, Amir H. Karamlou, Ilan T. Rosen, Jesse C. Hoke, Chao Wan, Jin Peng Zhou, William D. Oliver, Yuri D. Lensky, Kilian Q. Weinberger, Eun-Ah Kim
{"title":"关注量子复杂性","authors":"Hyejin Kim,&nbsp;Yiqing Zhou,&nbsp;Yichen Xu,&nbsp;Kaarthik Varma,&nbsp;Amir H. Karamlou,&nbsp;Ilan T. Rosen,&nbsp;Jesse C. Hoke,&nbsp;Chao Wan,&nbsp;Jin Peng Zhou,&nbsp;William D. Oliver,&nbsp;Yuri D. Lensky,&nbsp;Kilian Q. Weinberger,&nbsp;Eun-Ah Kim","doi":"10.1126/sciadv.adu0059","DOIUrl":null,"url":null,"abstract":"<div >The imminent era of error-corrected quantum computing demands robust methods to characterize quantum state complexity from limited, noisy measurements. We introduce the Quantum Attention Network (QuAN), a classical artificial intelligence (AI) framework leveraging attention mechanisms tailored for learning quantum complexity. Inspired by large language models, QuAN treats measurement snapshots as tokens while respecting permutation invariance. Combined with our parameter-efficient miniset self-attention block, this enables QuAN to access high-order moments of bit-string distributions and preferentially attend to less noisy snapshots. We test QuAN across three quantum simulation settings: driven hard-core Bose-Hubbard model, random quantum circuits, and toric code under coherent and incoherent noise. QuAN directly learns entanglement and state complexity growth from experimental computational basis measurements, including complexity growth in random circuits from noisy data. In regimes inaccessible to existing theory, QuAN unveils the complete phase diagram for noisy toric code data as a function of both noise types, highlighting AI’s transformative potential for assisting quantum hardware.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu0059","citationCount":"0","resultStr":"{\"title\":\"Attention to quantum complexity\",\"authors\":\"Hyejin Kim,&nbsp;Yiqing Zhou,&nbsp;Yichen Xu,&nbsp;Kaarthik Varma,&nbsp;Amir H. Karamlou,&nbsp;Ilan T. Rosen,&nbsp;Jesse C. Hoke,&nbsp;Chao Wan,&nbsp;Jin Peng Zhou,&nbsp;William D. Oliver,&nbsp;Yuri D. Lensky,&nbsp;Kilian Q. Weinberger,&nbsp;Eun-Ah Kim\",\"doi\":\"10.1126/sciadv.adu0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The imminent era of error-corrected quantum computing demands robust methods to characterize quantum state complexity from limited, noisy measurements. We introduce the Quantum Attention Network (QuAN), a classical artificial intelligence (AI) framework leveraging attention mechanisms tailored for learning quantum complexity. Inspired by large language models, QuAN treats measurement snapshots as tokens while respecting permutation invariance. Combined with our parameter-efficient miniset self-attention block, this enables QuAN to access high-order moments of bit-string distributions and preferentially attend to less noisy snapshots. We test QuAN across three quantum simulation settings: driven hard-core Bose-Hubbard model, random quantum circuits, and toric code under coherent and incoherent noise. QuAN directly learns entanglement and state complexity growth from experimental computational basis measurements, including complexity growth in random circuits from noisy data. In regimes inaccessible to existing theory, QuAN unveils the complete phase diagram for noisy toric code data as a function of both noise types, highlighting AI’s transformative potential for assisting quantum hardware.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 41\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu0059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu0059\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu0059","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

即将到来的纠错量子计算时代需要强大的方法来从有限的、有噪声的测量中表征量子态的复杂性。我们介绍了量子注意力网络(QuAN),这是一种经典的人工智能(AI)框架,利用为学习量子复杂性量身定制的注意力机制。受大型语言模型的启发,QuAN将度量快照视为标记,同时尊重排列不变性。结合我们的参数高效迷你集自关注块,这使QuAN能够访问位串分布的高阶矩,并优先关注噪声较小的快照。我们在三种量子模拟设置中测试QuAN:驱动硬核Bose-Hubbard模型,随机量子电路以及相干和非相干噪声下的环面码。QuAN直接从实验计算基础测量中学习纠缠和状态复杂性增长,包括随机电路中噪声数据的复杂性增长。在现有理论无法实现的情况下,QuAN揭示了噪声环码数据的完整相位图,作为两种噪声类型的函数,突出了人工智能在辅助量子硬件方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Attention to quantum complexity

Attention to quantum complexity
The imminent era of error-corrected quantum computing demands robust methods to characterize quantum state complexity from limited, noisy measurements. We introduce the Quantum Attention Network (QuAN), a classical artificial intelligence (AI) framework leveraging attention mechanisms tailored for learning quantum complexity. Inspired by large language models, QuAN treats measurement snapshots as tokens while respecting permutation invariance. Combined with our parameter-efficient miniset self-attention block, this enables QuAN to access high-order moments of bit-string distributions and preferentially attend to less noisy snapshots. We test QuAN across three quantum simulation settings: driven hard-core Bose-Hubbard model, random quantum circuits, and toric code under coherent and incoherent noise. QuAN directly learns entanglement and state complexity growth from experimental computational basis measurements, including complexity growth in random circuits from noisy data. In regimes inaccessible to existing theory, QuAN unveils the complete phase diagram for noisy toric code data as a function of both noise types, highlighting AI’s transformative potential for assisting quantum hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信