数字孪生使辐射敏感的有机物种在三维

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Laure Cazals, Agnès Desolneux, Simo Huotari, Lauren Dalecky, Christoph Sahle, Alessandro Mirone, Serge X. Cohen, Loïc Bertrand
{"title":"数字孪生使辐射敏感的有机物种在三维","authors":"Laure Cazals,&nbsp;Agnès Desolneux,&nbsp;Simo Huotari,&nbsp;Lauren Dalecky,&nbsp;Christoph Sahle,&nbsp;Alessandro Mirone,&nbsp;Serge X. Cohen,&nbsp;Loïc Bertrand","doi":"10.1126/sciadv.adw5444","DOIUrl":null,"url":null,"abstract":"<div >State-of-the-art spectral imaging techniques using high-brilliance sources face an inherent trade-off between signal intensity and sample integrity, particularly in hyperspectral and multispectral imaging. Traditionally, optimizing acquisition parameters, such as source wavelength, intensity, and exposure time, relies on empirical adjustments to enhance image contrast. Here, we introduce a digital twin methodology to overcome these limitations. Focusing on x-ray Raman imaging, a powerful yet underutilized speciation probe constrained by low quantum efficiency, we demonstrate its application to sensitive organic samples. Our approach enabled a 10-fold reduction in acquisition time while maintaining operation below the damage threshold, paving the way for high-fidelity spectral imaging with minimal sample degradation.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw5444","citationCount":"0","resultStr":"{\"title\":\"Digital twin enables radiosensitive organic speciation in 3D\",\"authors\":\"Laure Cazals,&nbsp;Agnès Desolneux,&nbsp;Simo Huotari,&nbsp;Lauren Dalecky,&nbsp;Christoph Sahle,&nbsp;Alessandro Mirone,&nbsp;Serge X. Cohen,&nbsp;Loïc Bertrand\",\"doi\":\"10.1126/sciadv.adw5444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >State-of-the-art spectral imaging techniques using high-brilliance sources face an inherent trade-off between signal intensity and sample integrity, particularly in hyperspectral and multispectral imaging. Traditionally, optimizing acquisition parameters, such as source wavelength, intensity, and exposure time, relies on empirical adjustments to enhance image contrast. Here, we introduce a digital twin methodology to overcome these limitations. Focusing on x-ray Raman imaging, a powerful yet underutilized speciation probe constrained by low quantum efficiency, we demonstrate its application to sensitive organic samples. Our approach enabled a 10-fold reduction in acquisition time while maintaining operation below the damage threshold, paving the way for high-fidelity spectral imaging with minimal sample degradation.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 41\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw5444\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw5444\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw5444","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用高亮度光源的最先进的光谱成像技术面临着信号强度和样品完整性之间的内在权衡,特别是在高光谱和多光谱成像中。传统上,优化采集参数,如光源波长、强度和曝光时间,依赖于经验调整来增强图像对比度。在这里,我们介绍了一种数字孪生方法来克服这些限制。x射线拉曼成像是一种强大但未充分利用的物种形成探针,受低量子效率的限制,我们展示了它在敏感有机样品中的应用。我们的方法使采集时间减少了10倍,同时保持操作低于损伤阈值,为以最小的样品降解实现高保真光谱成像铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Digital twin enables radiosensitive organic speciation in 3D

Digital twin enables radiosensitive organic speciation in 3D
State-of-the-art spectral imaging techniques using high-brilliance sources face an inherent trade-off between signal intensity and sample integrity, particularly in hyperspectral and multispectral imaging. Traditionally, optimizing acquisition parameters, such as source wavelength, intensity, and exposure time, relies on empirical adjustments to enhance image contrast. Here, we introduce a digital twin methodology to overcome these limitations. Focusing on x-ray Raman imaging, a powerful yet underutilized speciation probe constrained by low quantum efficiency, we demonstrate its application to sensitive organic samples. Our approach enabled a 10-fold reduction in acquisition time while maintaining operation below the damage threshold, paving the way for high-fidelity spectral imaging with minimal sample degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信