原子薄Kagome金属中的高阶Van Hove奇点

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-09 DOI:10.1021/acsnano.5c11205
Yuriy E. Vekovshinin*, , , Leonid V. Bondarenko, , , Alexandra Y. Tupchaya, , , Tatiana V. Utas, , , Edrick Wang, , , Alexey N. Mihalyuk, , , Dimitry V. Gruznev, , , Andrey V. Zotov, , and , Alexander A. Saranin, 
{"title":"原子薄Kagome金属中的高阶Van Hove奇点","authors":"Yuriy E. Vekovshinin*,&nbsp;, ,&nbsp;Leonid V. Bondarenko,&nbsp;, ,&nbsp;Alexandra Y. Tupchaya,&nbsp;, ,&nbsp;Tatiana V. Utas,&nbsp;, ,&nbsp;Edrick Wang,&nbsp;, ,&nbsp;Alexey N. Mihalyuk,&nbsp;, ,&nbsp;Dimitry V. Gruznev,&nbsp;, ,&nbsp;Andrey V. Zotov,&nbsp;, and ,&nbsp;Alexander A. Saranin,&nbsp;","doi":"10.1021/acsnano.5c11205","DOIUrl":null,"url":null,"abstract":"<p >Kagome materials serve as a versatile platform where an interplay of flat bands, Dirac Fermions, and Van Hove singularities enables the emergence of exotic strongly correlated phenomena. Recently, it was predicted that an ideal single layer kagome lattice may host high-order Van Hove singularities (HOVHSs) characterized by extremely flat dispersions, leading to drastic changes in electronic behavior. However, experimentally, HOVHSs have been observed up to now only in a narrow range of materials, mostly in graphene layers, but not in metal–semiconductor interfaces. Here, we report the discovery of HOVHSs in the monolayer-thick kagome metal LaTl<sub>3</sub> epitaxially synthesized on the Si(111) substrate. The scanning tunneling microscopy observations and ab initio calculations indicate the kagome-like ordering of the LaTl<sub>3</sub> layer, while the angle-resolved photoemission spectroscopy measurements and theoretical predictions uncover a rich and complex landscape of various Van Hove singularities emerged in the system, including high-order ones, which can significantly affect the anomalous Hall response and enable the unique high electron-correlation regime in the system. The discovered properties make the LaTl<sub>3</sub> kagome monolayer a highly attractive material for ultracompact nanoelectronic devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 41","pages":"36510–36516"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Order Van Hove Singularities in Atomically Thin Kagome Metal LaTl3\",\"authors\":\"Yuriy E. Vekovshinin*,&nbsp;, ,&nbsp;Leonid V. Bondarenko,&nbsp;, ,&nbsp;Alexandra Y. Tupchaya,&nbsp;, ,&nbsp;Tatiana V. Utas,&nbsp;, ,&nbsp;Edrick Wang,&nbsp;, ,&nbsp;Alexey N. Mihalyuk,&nbsp;, ,&nbsp;Dimitry V. Gruznev,&nbsp;, ,&nbsp;Andrey V. Zotov,&nbsp;, and ,&nbsp;Alexander A. Saranin,&nbsp;\",\"doi\":\"10.1021/acsnano.5c11205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Kagome materials serve as a versatile platform where an interplay of flat bands, Dirac Fermions, and Van Hove singularities enables the emergence of exotic strongly correlated phenomena. Recently, it was predicted that an ideal single layer kagome lattice may host high-order Van Hove singularities (HOVHSs) characterized by extremely flat dispersions, leading to drastic changes in electronic behavior. However, experimentally, HOVHSs have been observed up to now only in a narrow range of materials, mostly in graphene layers, but not in metal–semiconductor interfaces. Here, we report the discovery of HOVHSs in the monolayer-thick kagome metal LaTl<sub>3</sub> epitaxially synthesized on the Si(111) substrate. The scanning tunneling microscopy observations and ab initio calculations indicate the kagome-like ordering of the LaTl<sub>3</sub> layer, while the angle-resolved photoemission spectroscopy measurements and theoretical predictions uncover a rich and complex landscape of various Van Hove singularities emerged in the system, including high-order ones, which can significantly affect the anomalous Hall response and enable the unique high electron-correlation regime in the system. The discovered properties make the LaTl<sub>3</sub> kagome monolayer a highly attractive material for ultracompact nanoelectronic devices.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 41\",\"pages\":\"36510–36516\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c11205\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c11205","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Kagome材料作为一个多功能平台,在这里,平带、狄拉克费米子和范霍夫奇点的相互作用使奇异的强相关现象得以出现。最近,预测一个理想的单层kagome晶格可能具有高阶Van Hove奇点(hovhs),其特征是极平坦的色散,导致电子行为的剧烈变化。然而,实验上,到目前为止,hovhs只在很小范围的材料中被观察到,主要是在石墨烯层中,而不是在金属-半导体界面中。在这里,我们报道了在Si(111)衬底上外延合成的单层厚kagome金属LaTl3中发现hovhs。扫描隧道显微镜观察和从头计算表明了LaTl3层的kagom样有序,而角度分辨光谱学测量和理论预测揭示了系统中出现的各种Van Hove奇点的丰富和复杂景观,包括高阶奇点,这些奇点可以显着影响异常霍尔响应并使系统中独特的高电子相关机制成为可能。这些发现的特性使LaTl3 kagome单层材料成为超紧凑纳米电子器件的极具吸引力的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Order Van Hove Singularities in Atomically Thin Kagome Metal LaTl3

High-Order Van Hove Singularities in Atomically Thin Kagome Metal LaTl3

High-Order Van Hove Singularities in Atomically Thin Kagome Metal LaTl3

Kagome materials serve as a versatile platform where an interplay of flat bands, Dirac Fermions, and Van Hove singularities enables the emergence of exotic strongly correlated phenomena. Recently, it was predicted that an ideal single layer kagome lattice may host high-order Van Hove singularities (HOVHSs) characterized by extremely flat dispersions, leading to drastic changes in electronic behavior. However, experimentally, HOVHSs have been observed up to now only in a narrow range of materials, mostly in graphene layers, but not in metal–semiconductor interfaces. Here, we report the discovery of HOVHSs in the monolayer-thick kagome metal LaTl3 epitaxially synthesized on the Si(111) substrate. The scanning tunneling microscopy observations and ab initio calculations indicate the kagome-like ordering of the LaTl3 layer, while the angle-resolved photoemission spectroscopy measurements and theoretical predictions uncover a rich and complex landscape of various Van Hove singularities emerged in the system, including high-order ones, which can significantly affect the anomalous Hall response and enable the unique high electron-correlation regime in the system. The discovered properties make the LaTl3 kagome monolayer a highly attractive material for ultracompact nanoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信