Su Direkci, Klemens Winkler, Corentin Gut, Markus Aspelmeyer, Yanbei Chen
{"title":"非马尔可夫噪声和压缩光驱动的光力学系统中稳态纠缠的普适性","authors":"Su Direkci, Klemens Winkler, Corentin Gut, Markus Aspelmeyer, Yanbei Chen","doi":"10.1103/vzhk-cdc3","DOIUrl":null,"url":null,"abstract":"Optomechanical systems subjected to environmental noise give rise to rich physical phenomena. We investigate entanglement between a mechanical oscillator and the reflected coherent optical field in a general, not necessarily Markovian environment. For the input optical field, we consider stationary Gaussian states and frequency-dependent squeezing. We demonstrate that for a coherent laser drive, either unsqueezed or squeezed in a frequency-independent manner, optomechanical entanglement is destroyed after a threshold that depends only on the environmental noises—independent of the coherent coupling between the oscillator and the optical field, or the squeeze factor. In this way, we have found a universal entangling-disentangling transition. We also show that for a configuration in which the oscillator and the reflected field are separable, entanglement cannot be generated by incorporating frequency-dependent squeezing in the optical field.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"114 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universality of Stationary Entanglement in an Optomechanical System Driven by Non-Markovian Noise and Squeezed Light\",\"authors\":\"Su Direkci, Klemens Winkler, Corentin Gut, Markus Aspelmeyer, Yanbei Chen\",\"doi\":\"10.1103/vzhk-cdc3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optomechanical systems subjected to environmental noise give rise to rich physical phenomena. We investigate entanglement between a mechanical oscillator and the reflected coherent optical field in a general, not necessarily Markovian environment. For the input optical field, we consider stationary Gaussian states and frequency-dependent squeezing. We demonstrate that for a coherent laser drive, either unsqueezed or squeezed in a frequency-independent manner, optomechanical entanglement is destroyed after a threshold that depends only on the environmental noises—independent of the coherent coupling between the oscillator and the optical field, or the squeeze factor. In this way, we have found a universal entangling-disentangling transition. We also show that for a configuration in which the oscillator and the reflected field are separable, entanglement cannot be generated by incorporating frequency-dependent squeezing in the optical field.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/vzhk-cdc3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/vzhk-cdc3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Universality of Stationary Entanglement in an Optomechanical System Driven by Non-Markovian Noise and Squeezed Light
Optomechanical systems subjected to environmental noise give rise to rich physical phenomena. We investigate entanglement between a mechanical oscillator and the reflected coherent optical field in a general, not necessarily Markovian environment. For the input optical field, we consider stationary Gaussian states and frequency-dependent squeezing. We demonstrate that for a coherent laser drive, either unsqueezed or squeezed in a frequency-independent manner, optomechanical entanglement is destroyed after a threshold that depends only on the environmental noises—independent of the coherent coupling between the oscillator and the optical field, or the squeeze factor. In this way, we have found a universal entangling-disentangling transition. We also show that for a configuration in which the oscillator and the reflected field are separable, entanglement cannot be generated by incorporating frequency-dependent squeezing in the optical field.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks