Mallory J. Llewellyn, Danielle N. Meyer, Amelia M. Paquette, Chia-Chen Wu, Dayita Banerjee, Adam F. Pedersen, Anna-Maria V. Petriv, Abraham Soto, Tracie R. Baker
{"title":"斑马鱼(Danio rerio)在发育过程中暴露于聚苯乙烯纳米塑料的不良成年发病和多代效应","authors":"Mallory J. Llewellyn, Danielle N. Meyer, Amelia M. Paquette, Chia-Chen Wu, Dayita Banerjee, Adam F. Pedersen, Anna-Maria V. Petriv, Abraham Soto, Tracie R. Baker","doi":"10.1016/j.envpol.2025.127223","DOIUrl":null,"url":null,"abstract":"Microplastic (MP) and nanoplastic (NP) pollution has permeated virtually all aspects of life on earth – from high altitude clouds and arctic ice cores to single celled algae and unborn fetuses. Compared to MPs, the ability of NPs to infiltrate biological barriers such as the blood-brain and testes barriers is concerning to human health. Evidence of accumulation across human tissues has accrued, but the long-term health consequences are not well understood. Previously, we exposed zebrafish larvae to environmentally relevant doses of NPs (0 –10,000 parts per billion) for five days during early development, reporting NP accumulation, hyperactivity, and disruption of neuromuscular, metabolic, and epigenetic pathways immediately post-exposure. Here, we reared these developmentally exposed animals to adulthood, assessing reproductive capacity, offspring neurobehavior, and transcriptomics of brain and gonadal tissue for comparison. NP exposure impaired reproduction in adulthood: while high level exposure profoundly reduced overall spawning capacity, intermediate exposure also decreased fertilization of elicited eggs. Surviving offspring from the intermediate group were also hyperactive, like their parents, demonstrating a persistent and heritable neurobehavioral phenotype. Overall, far more significantly differentially expressed genes were found in adult tissues than in larvae; however, larval disruption of endocrine and neurological disease pathways persisted into adulthood. While female transcriptomics suggested recovery from early life NP exposure, male tissues were deleteriously and disproportionately affected. Male transcriptomics implicated neuromuscular and neurodegenerative diseases, endocrine disruption, and cancer. Oxidative stress was a consistently present mechanism underlying persistent disruption and adult-onset pathologies.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"40 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adverse adult-onset and multigenerational effects in zebrafish (Danio rerio) developmentally exposed to polystyrene nanoplastics\",\"authors\":\"Mallory J. Llewellyn, Danielle N. Meyer, Amelia M. Paquette, Chia-Chen Wu, Dayita Banerjee, Adam F. Pedersen, Anna-Maria V. Petriv, Abraham Soto, Tracie R. Baker\",\"doi\":\"10.1016/j.envpol.2025.127223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microplastic (MP) and nanoplastic (NP) pollution has permeated virtually all aspects of life on earth – from high altitude clouds and arctic ice cores to single celled algae and unborn fetuses. Compared to MPs, the ability of NPs to infiltrate biological barriers such as the blood-brain and testes barriers is concerning to human health. Evidence of accumulation across human tissues has accrued, but the long-term health consequences are not well understood. Previously, we exposed zebrafish larvae to environmentally relevant doses of NPs (0 –10,000 parts per billion) for five days during early development, reporting NP accumulation, hyperactivity, and disruption of neuromuscular, metabolic, and epigenetic pathways immediately post-exposure. Here, we reared these developmentally exposed animals to adulthood, assessing reproductive capacity, offspring neurobehavior, and transcriptomics of brain and gonadal tissue for comparison. NP exposure impaired reproduction in adulthood: while high level exposure profoundly reduced overall spawning capacity, intermediate exposure also decreased fertilization of elicited eggs. Surviving offspring from the intermediate group were also hyperactive, like their parents, demonstrating a persistent and heritable neurobehavioral phenotype. Overall, far more significantly differentially expressed genes were found in adult tissues than in larvae; however, larval disruption of endocrine and neurological disease pathways persisted into adulthood. While female transcriptomics suggested recovery from early life NP exposure, male tissues were deleteriously and disproportionately affected. Male transcriptomics implicated neuromuscular and neurodegenerative diseases, endocrine disruption, and cancer. Oxidative stress was a consistently present mechanism underlying persistent disruption and adult-onset pathologies.\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envpol.2025.127223\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.127223","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Adverse adult-onset and multigenerational effects in zebrafish (Danio rerio) developmentally exposed to polystyrene nanoplastics
Microplastic (MP) and nanoplastic (NP) pollution has permeated virtually all aspects of life on earth – from high altitude clouds and arctic ice cores to single celled algae and unborn fetuses. Compared to MPs, the ability of NPs to infiltrate biological barriers such as the blood-brain and testes barriers is concerning to human health. Evidence of accumulation across human tissues has accrued, but the long-term health consequences are not well understood. Previously, we exposed zebrafish larvae to environmentally relevant doses of NPs (0 –10,000 parts per billion) for five days during early development, reporting NP accumulation, hyperactivity, and disruption of neuromuscular, metabolic, and epigenetic pathways immediately post-exposure. Here, we reared these developmentally exposed animals to adulthood, assessing reproductive capacity, offspring neurobehavior, and transcriptomics of brain and gonadal tissue for comparison. NP exposure impaired reproduction in adulthood: while high level exposure profoundly reduced overall spawning capacity, intermediate exposure also decreased fertilization of elicited eggs. Surviving offspring from the intermediate group were also hyperactive, like their parents, demonstrating a persistent and heritable neurobehavioral phenotype. Overall, far more significantly differentially expressed genes were found in adult tissues than in larvae; however, larval disruption of endocrine and neurological disease pathways persisted into adulthood. While female transcriptomics suggested recovery from early life NP exposure, male tissues were deleteriously and disproportionately affected. Male transcriptomics implicated neuromuscular and neurodegenerative diseases, endocrine disruption, and cancer. Oxidative stress was a consistently present mechanism underlying persistent disruption and adult-onset pathologies.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.