分层陶瓷封装策略为下一代激光驱动二极管提供坚固的钙钛矿纳米晶体

IF 10 1区 物理与天体物理 Q1 OPTICS
Xiandi Zhang, Mengda He, Peng Li, Zhenhao Liu, Hui Hao, Xi Chang, Mingxia Zhang, Qinggang Zhang, Liang Li
{"title":"分层陶瓷封装策略为下一代激光驱动二极管提供坚固的钙钛矿纳米晶体","authors":"Xiandi Zhang, Mengda He, Peng Li, Zhenhao Liu, Hui Hao, Xi Chang, Mingxia Zhang, Qinggang Zhang, Liang Li","doi":"10.1002/lpor.202501789","DOIUrl":null,"url":null,"abstract":"All‐inorganic perovskite nanocrystals (CsPbBr<jats:sub>3</jats:sub> NCs) are promising for high‐color‐purity optoelectronic devices, yet their instability under operational stressors remains a critical bottleneck. Herein, a hierarchical ceramic encapsulation strategy combining mesoporous silica (SiO<jats:sub>2</jats:sub>) confinement and zirconia (ZrO<jats:sub>2</jats:sub>) ceramic coating to achieve ultra‐stable CsPbBr<jats:sub>3</jats:sub> NCs is proposed. The mesoporous SiO<jats:sub>2</jats:sub> framework acts as a nanoreactor for spatially confined NCs growth, while atomic‐layer‐deposited ZrO<jats:sub>2</jats:sub> seals residual micropores and forms a dense, impermeable shell via high‐temperature annealing (300–600 °C). Optimized composites (400 °C‐annealed) retain a high photoluminescence quantum yield (PLQY &gt;85%) and demonstrate record stability: maintain 100% of their photoluminescence value after 720 h under “double‐85” (85 °C, 85% RH) conditions and &gt;65% of initial PL intensity under high‐power laser excitation (200 mW mm<jats:sup>−2</jats:sup>, 450 nm) for 108 h. When integrated into laser‐driven white‐light devices, the device achieves an ultra‐wide color gamut (98% Rec. 2020, and 131% NTSC), surpassing state‐of‐the‐art perovskite‐based systems. This dual‐phase hierarchical ceramic encapsulation strategy not only overcome the stability bottleneck of perovskites but also unlocks their potential in high‐energy photonic technologies.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"50 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Ceramic Encapsulation Strategy Enables Robust Perovskite Nanocrystals for Next‐Generation Laser‐Driven Diodes\",\"authors\":\"Xiandi Zhang, Mengda He, Peng Li, Zhenhao Liu, Hui Hao, Xi Chang, Mingxia Zhang, Qinggang Zhang, Liang Li\",\"doi\":\"10.1002/lpor.202501789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All‐inorganic perovskite nanocrystals (CsPbBr<jats:sub>3</jats:sub> NCs) are promising for high‐color‐purity optoelectronic devices, yet their instability under operational stressors remains a critical bottleneck. Herein, a hierarchical ceramic encapsulation strategy combining mesoporous silica (SiO<jats:sub>2</jats:sub>) confinement and zirconia (ZrO<jats:sub>2</jats:sub>) ceramic coating to achieve ultra‐stable CsPbBr<jats:sub>3</jats:sub> NCs is proposed. The mesoporous SiO<jats:sub>2</jats:sub> framework acts as a nanoreactor for spatially confined NCs growth, while atomic‐layer‐deposited ZrO<jats:sub>2</jats:sub> seals residual micropores and forms a dense, impermeable shell via high‐temperature annealing (300–600 °C). Optimized composites (400 °C‐annealed) retain a high photoluminescence quantum yield (PLQY &gt;85%) and demonstrate record stability: maintain 100% of their photoluminescence value after 720 h under “double‐85” (85 °C, 85% RH) conditions and &gt;65% of initial PL intensity under high‐power laser excitation (200 mW mm<jats:sup>−2</jats:sup>, 450 nm) for 108 h. When integrated into laser‐driven white‐light devices, the device achieves an ultra‐wide color gamut (98% Rec. 2020, and 131% NTSC), surpassing state‐of‐the‐art perovskite‐based systems. This dual‐phase hierarchical ceramic encapsulation strategy not only overcome the stability bottleneck of perovskites but also unlocks their potential in high‐energy photonic technologies.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202501789\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501789","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

全无机钙钛矿纳米晶体(CsPbBr3 NCs)在高色纯光电器件中具有广阔的应用前景,但其在工作应力下的不稳定性仍然是一个关键瓶颈。本文提出了一种结合介孔二氧化硅(SiO2)约束和氧化锆(ZrO2)陶瓷涂层的分层陶瓷封装策略,以获得超稳定的CsPbBr3 NCs。介孔SiO2框架作为纳米反应器用于空间限制的NCs生长,而原子层沉积的ZrO2通过高温退火(300-600°C)密封残余的微孔并形成致密的不渗透壳。优化后的复合材料(400°C退火)保持了较高的光致发光量子产率(PLQY >85%),并表现出创纪录的稳定性:在“双85”(85°C, 85% RH)条件下720小时后保持100%的光致发光值,在高功率激光激发(200 mW mm - 2,450 nm)下保持初始PL强度的>;65%,持续108小时。当集成到激光驱动的白光器件中时,该器件实现了超宽色域(98% Rec. 2020, 131% NTSC),超越了最先进的钙钛矿基系统。这种双相分层陶瓷封装策略不仅克服了钙钛矿的稳定性瓶颈,而且释放了钙钛矿在高能光子技术中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Ceramic Encapsulation Strategy Enables Robust Perovskite Nanocrystals for Next‐Generation Laser‐Driven Diodes
All‐inorganic perovskite nanocrystals (CsPbBr3 NCs) are promising for high‐color‐purity optoelectronic devices, yet their instability under operational stressors remains a critical bottleneck. Herein, a hierarchical ceramic encapsulation strategy combining mesoporous silica (SiO2) confinement and zirconia (ZrO2) ceramic coating to achieve ultra‐stable CsPbBr3 NCs is proposed. The mesoporous SiO2 framework acts as a nanoreactor for spatially confined NCs growth, while atomic‐layer‐deposited ZrO2 seals residual micropores and forms a dense, impermeable shell via high‐temperature annealing (300–600 °C). Optimized composites (400 °C‐annealed) retain a high photoluminescence quantum yield (PLQY >85%) and demonstrate record stability: maintain 100% of their photoluminescence value after 720 h under “double‐85” (85 °C, 85% RH) conditions and >65% of initial PL intensity under high‐power laser excitation (200 mW mm−2, 450 nm) for 108 h. When integrated into laser‐driven white‐light devices, the device achieves an ultra‐wide color gamut (98% Rec. 2020, and 131% NTSC), surpassing state‐of‐the‐art perovskite‐based systems. This dual‐phase hierarchical ceramic encapsulation strategy not only overcome the stability bottleneck of perovskites but also unlocks their potential in high‐energy photonic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信