Yong Chen,Xiangde Luo,Renyi Chen,Yiyue Li,Han Zhang,He Lyu,Huan Song,Kang Li
{"title":"基于影响点引导的渐进式教师无源主动域自适应医学图像分割。","authors":"Yong Chen,Xiangde Luo,Renyi Chen,Yiyue Li,Han Zhang,He Lyu,Huan Song,Kang Li","doi":"10.1109/tmi.2025.3619837","DOIUrl":null,"url":null,"abstract":"Domain adaptation in medical image segmentation enables pre-trained models to generalize to new target domains. Given limited annotated data and privacy constraints, Source-Free Active Domain Adaptation (SFADA) methods provide promising solutions by selecting a few target samples for labeling without accessing source samples. However, in a fully source-free setting, existing works have not fully explored how to select these target samples in a class-balanced manner and how to conduct robust model adaptation using both labeled and unlabeled samples. In this study, we discover that boundary samples with source-like semantics but sharp predictive discrepancies are beneficial for SFADA. We define these samples as the most influential points and propose a slice-wise framework using influential points learning to explore them. Specifically, we detect source-like samples to retain source-specific knowledge. For each target sample, an adaptive K-nearest neighbor algorithm based on local density is introduced to construct neighborhoods of source-like samples for knowledge transfer. We then propose a class-balanced Kullback-Leibler divergence for these neighborhoods, calculating it to obtain an influential score ranking. A diverse subset of the highest-ranked target samples (considered influential points) is manually annotated. Furthermore, we design a progressive teacher model to facilitate SFADA for medical image segmentation. Guided by influential points, this model independently generates and utilizes pseudo-labels to mitigate error accumulation. To further suppress noise, curriculum learning is incorporated into the model to progressively leverage reliable supervision signals from pseudo-labels. Experiments on multiple benchmarks demonstrate that our method outperforms state-of-the-art methods even with only 2.5% of the labeling budget.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"126 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source-Free Active Domain Adaptation via Influential-Points-Guided Progressive Teacher for Medical Image Segmentation.\",\"authors\":\"Yong Chen,Xiangde Luo,Renyi Chen,Yiyue Li,Han Zhang,He Lyu,Huan Song,Kang Li\",\"doi\":\"10.1109/tmi.2025.3619837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain adaptation in medical image segmentation enables pre-trained models to generalize to new target domains. Given limited annotated data and privacy constraints, Source-Free Active Domain Adaptation (SFADA) methods provide promising solutions by selecting a few target samples for labeling without accessing source samples. However, in a fully source-free setting, existing works have not fully explored how to select these target samples in a class-balanced manner and how to conduct robust model adaptation using both labeled and unlabeled samples. In this study, we discover that boundary samples with source-like semantics but sharp predictive discrepancies are beneficial for SFADA. We define these samples as the most influential points and propose a slice-wise framework using influential points learning to explore them. Specifically, we detect source-like samples to retain source-specific knowledge. For each target sample, an adaptive K-nearest neighbor algorithm based on local density is introduced to construct neighborhoods of source-like samples for knowledge transfer. We then propose a class-balanced Kullback-Leibler divergence for these neighborhoods, calculating it to obtain an influential score ranking. A diverse subset of the highest-ranked target samples (considered influential points) is manually annotated. Furthermore, we design a progressive teacher model to facilitate SFADA for medical image segmentation. Guided by influential points, this model independently generates and utilizes pseudo-labels to mitigate error accumulation. To further suppress noise, curriculum learning is incorporated into the model to progressively leverage reliable supervision signals from pseudo-labels. Experiments on multiple benchmarks demonstrate that our method outperforms state-of-the-art methods even with only 2.5% of the labeling budget.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tmi.2025.3619837\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3619837","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Source-Free Active Domain Adaptation via Influential-Points-Guided Progressive Teacher for Medical Image Segmentation.
Domain adaptation in medical image segmentation enables pre-trained models to generalize to new target domains. Given limited annotated data and privacy constraints, Source-Free Active Domain Adaptation (SFADA) methods provide promising solutions by selecting a few target samples for labeling without accessing source samples. However, in a fully source-free setting, existing works have not fully explored how to select these target samples in a class-balanced manner and how to conduct robust model adaptation using both labeled and unlabeled samples. In this study, we discover that boundary samples with source-like semantics but sharp predictive discrepancies are beneficial for SFADA. We define these samples as the most influential points and propose a slice-wise framework using influential points learning to explore them. Specifically, we detect source-like samples to retain source-specific knowledge. For each target sample, an adaptive K-nearest neighbor algorithm based on local density is introduced to construct neighborhoods of source-like samples for knowledge transfer. We then propose a class-balanced Kullback-Leibler divergence for these neighborhoods, calculating it to obtain an influential score ranking. A diverse subset of the highest-ranked target samples (considered influential points) is manually annotated. Furthermore, we design a progressive teacher model to facilitate SFADA for medical image segmentation. Guided by influential points, this model independently generates and utilizes pseudo-labels to mitigate error accumulation. To further suppress noise, curriculum learning is incorporated into the model to progressively leverage reliable supervision signals from pseudo-labels. Experiments on multiple benchmarks demonstrate that our method outperforms state-of-the-art methods even with only 2.5% of the labeling budget.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.