{"title":"肝细胞癌中WNT-β-catenin信号:从实验到临床试验","authors":"Brandon M Lehrich,Satdarshan P Monga","doi":"10.1038/s41575-025-01127-y","DOIUrl":null,"url":null,"abstract":"WNT-β-catenin activation is observed in around 50% of all patients with hepatocellular carcinoma (HCC), through either gain-of-function mutations in CTNNB1 (which encodes β-catenin) or loss-of-function mutations in AXIN1 or APC. Currently, first-line therapies for HCC are immune checkpoint inhibitor (ICI) combinations, and β-catenin-active HCCs have garnered increased attention due to their unique tumour immune microenvironment (TIME). This pathway is known to drive an immune-excluded TIME, but clinical investigations have provided a more nuanced perspective, with the emergence of a new 'immune-like' subclass of HCC that is paradoxically enriched for CTNNB1 mutations and has high levels of T cell infiltration. As such, patients and animal models with β-catenin activation treated with ICIs exhibit heterogeneous responses. Additionally, these tumours exhibit higher fatty acid oxidation to fuel tumour growth owing to a unique metabolic milieu shaped by zone 3 metabolism, which is a physiological function of WNT-β-catenin signalling in the liver lobule. Biomarkers to detect molecular subclasses of patients for targeted therapies are being developed. In this Review, we discuss advances in our understanding of the TIME and metabolism of β-catenin-active HCC, driven by in vitro and in vivo models and single-cell and spatial sequencing, and their implications for the treatment of a subset of HCCs using precision therapies against WNT-β-catenin signalling.","PeriodicalId":18793,"journal":{"name":"Nature Reviews Gastroenterology &Hepatology","volume":"19 1","pages":""},"PeriodicalIF":51.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WNT-β-catenin signalling in hepatocellular carcinoma: from bench to clinical trials.\",\"authors\":\"Brandon M Lehrich,Satdarshan P Monga\",\"doi\":\"10.1038/s41575-025-01127-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WNT-β-catenin activation is observed in around 50% of all patients with hepatocellular carcinoma (HCC), through either gain-of-function mutations in CTNNB1 (which encodes β-catenin) or loss-of-function mutations in AXIN1 or APC. Currently, first-line therapies for HCC are immune checkpoint inhibitor (ICI) combinations, and β-catenin-active HCCs have garnered increased attention due to their unique tumour immune microenvironment (TIME). This pathway is known to drive an immune-excluded TIME, but clinical investigations have provided a more nuanced perspective, with the emergence of a new 'immune-like' subclass of HCC that is paradoxically enriched for CTNNB1 mutations and has high levels of T cell infiltration. As such, patients and animal models with β-catenin activation treated with ICIs exhibit heterogeneous responses. Additionally, these tumours exhibit higher fatty acid oxidation to fuel tumour growth owing to a unique metabolic milieu shaped by zone 3 metabolism, which is a physiological function of WNT-β-catenin signalling in the liver lobule. Biomarkers to detect molecular subclasses of patients for targeted therapies are being developed. In this Review, we discuss advances in our understanding of the TIME and metabolism of β-catenin-active HCC, driven by in vitro and in vivo models and single-cell and spatial sequencing, and their implications for the treatment of a subset of HCCs using precision therapies against WNT-β-catenin signalling.\",\"PeriodicalId\":18793,\"journal\":{\"name\":\"Nature Reviews Gastroenterology &Hepatology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":51.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Gastroenterology &Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41575-025-01127-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Gastroenterology &Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41575-025-01127-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
WNT-β-catenin signalling in hepatocellular carcinoma: from bench to clinical trials.
WNT-β-catenin activation is observed in around 50% of all patients with hepatocellular carcinoma (HCC), through either gain-of-function mutations in CTNNB1 (which encodes β-catenin) or loss-of-function mutations in AXIN1 or APC. Currently, first-line therapies for HCC are immune checkpoint inhibitor (ICI) combinations, and β-catenin-active HCCs have garnered increased attention due to their unique tumour immune microenvironment (TIME). This pathway is known to drive an immune-excluded TIME, but clinical investigations have provided a more nuanced perspective, with the emergence of a new 'immune-like' subclass of HCC that is paradoxically enriched for CTNNB1 mutations and has high levels of T cell infiltration. As such, patients and animal models with β-catenin activation treated with ICIs exhibit heterogeneous responses. Additionally, these tumours exhibit higher fatty acid oxidation to fuel tumour growth owing to a unique metabolic milieu shaped by zone 3 metabolism, which is a physiological function of WNT-β-catenin signalling in the liver lobule. Biomarkers to detect molecular subclasses of patients for targeted therapies are being developed. In this Review, we discuss advances in our understanding of the TIME and metabolism of β-catenin-active HCC, driven by in vitro and in vivo models and single-cell and spatial sequencing, and their implications for the treatment of a subset of HCCs using precision therapies against WNT-β-catenin signalling.
期刊介绍:
Nature Reviews Gastroenterology & Hepatology aims to serve as the leading resource for Reviews and commentaries within the scientific and medical communities it caters to. The journal strives to maintain authority, accessibility, and clarity in its published articles, which are complemented by easily understandable figures, tables, and other display items. Dedicated to providing exceptional service to authors, referees, and readers, the editorial team works diligently to maximize the usefulness and impact of each publication.
The journal encompasses a wide range of content types, including Research Highlights, News & Views, Comments, Reviews, Perspectives, and Consensus Statements, all pertinent to gastroenterologists and hepatologists. With its broad scope, Nature Reviews Gastroenterology & Hepatology ensures that its articles reach a diverse audience, aiming for the widest possible dissemination of valuable information.
Nature Reviews Gastroenterology & Hepatology is part of the Nature Reviews portfolio of journals.