轨道工程:打破低温NH3-SCR在单原子催化剂上的活性-选择性-稳定性三难困境。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ting Zhang,Jingnan Wang,Jing Xia,Xi Wang
{"title":"轨道工程:打破低温NH3-SCR在单原子催化剂上的活性-选择性-稳定性三难困境。","authors":"Ting Zhang,Jingnan Wang,Jing Xia,Xi Wang","doi":"10.1021/acs.jpclett.5c02969","DOIUrl":null,"url":null,"abstract":"The persistent trade-off among high activity, optimal N2 selectivity, and robust poisoning resistance critically hinders the development of low-temperature (<250 °C) catalysts of the selective catalytic reduction with NH3 (NH3-SCR) in industrial denitrification. To resolve this trilemma, we propose an orbital engineering framework that deciphers the quantum-level interplay between spin states, orbital energetics, and electron occupancy governing catalytic performance. Our analysis reveals that elevating the lowest unoccupied molecular orbital (LUMO) energy of active sites dictates NH3-NO interactions, directly controlling activity and selectivity. Crucially, we introduce spin-orientation tuning as a novel strategy to overcome SO2 intolerance by disrupting competitive adsorption. We further outline synergistic design principles─support engineering, coordination modulation, asymmetric ligand fields, and external field regulation─to concurrently optimize all three performance metrics. This work establishes orbital engineering as the cornerstone for next-generation catalysts that transcend current limitations, enabling efficient denitrification under extremely low-temperature, high-sulfur, and humid conditions.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"18 1","pages":"10868-10878"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital Engineering: Breaking the Activity-Selectivity-Stability Trilemma in Low-Temperature NH3-SCR over Single-Atom Catalysts.\",\"authors\":\"Ting Zhang,Jingnan Wang,Jing Xia,Xi Wang\",\"doi\":\"10.1021/acs.jpclett.5c02969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The persistent trade-off among high activity, optimal N2 selectivity, and robust poisoning resistance critically hinders the development of low-temperature (<250 °C) catalysts of the selective catalytic reduction with NH3 (NH3-SCR) in industrial denitrification. To resolve this trilemma, we propose an orbital engineering framework that deciphers the quantum-level interplay between spin states, orbital energetics, and electron occupancy governing catalytic performance. Our analysis reveals that elevating the lowest unoccupied molecular orbital (LUMO) energy of active sites dictates NH3-NO interactions, directly controlling activity and selectivity. Crucially, we introduce spin-orientation tuning as a novel strategy to overcome SO2 intolerance by disrupting competitive adsorption. We further outline synergistic design principles─support engineering, coordination modulation, asymmetric ligand fields, and external field regulation─to concurrently optimize all three performance metrics. This work establishes orbital engineering as the cornerstone for next-generation catalysts that transcend current limitations, enabling efficient denitrification under extremely low-temperature, high-sulfur, and humid conditions.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"18 1\",\"pages\":\"10868-10878\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c02969\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c02969","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高活性、最佳N2选择性和强大的抗中毒能力之间的持续权衡严重阻碍了低温(<250°C) NH3选择性催化还原催化剂(NH3- scr)在工业反硝化中的发展。为了解决这个三难困境,我们提出了一个轨道工程框架,该框架可以破译自旋态、轨道能量学和控制催化性能的电子占比之间的量子级相互作用。我们的分析表明,提高活性位点的最低未占据分子轨道(LUMO)能量决定了NH3-NO相互作用,直接控制活性和选择性。至关重要的是,我们引入了自旋取向调整作为一种新的策略,通过破坏竞争性吸附来克服SO2不耐受。我们进一步概述了协同设计原则──支持工程、协调调制、不对称配体场和外部场调节──以同时优化所有三个性能指标。这项工作奠定了轨道工程作为下一代催化剂的基石,突破了目前的限制,使其能够在极低温、高硫和潮湿的条件下实现高效脱氮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orbital Engineering: Breaking the Activity-Selectivity-Stability Trilemma in Low-Temperature NH3-SCR over Single-Atom Catalysts.
The persistent trade-off among high activity, optimal N2 selectivity, and robust poisoning resistance critically hinders the development of low-temperature (<250 °C) catalysts of the selective catalytic reduction with NH3 (NH3-SCR) in industrial denitrification. To resolve this trilemma, we propose an orbital engineering framework that deciphers the quantum-level interplay between spin states, orbital energetics, and electron occupancy governing catalytic performance. Our analysis reveals that elevating the lowest unoccupied molecular orbital (LUMO) energy of active sites dictates NH3-NO interactions, directly controlling activity and selectivity. Crucially, we introduce spin-orientation tuning as a novel strategy to overcome SO2 intolerance by disrupting competitive adsorption. We further outline synergistic design principles─support engineering, coordination modulation, asymmetric ligand fields, and external field regulation─to concurrently optimize all three performance metrics. This work establishes orbital engineering as the cornerstone for next-generation catalysts that transcend current limitations, enabling efficient denitrification under extremely low-temperature, high-sulfur, and humid conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信