{"title":"生物医学应用的无机和有机杂化纳米结构。","authors":"Xiaoming Zhang , Zhanyao Xu , Yuxian Wei , Wei Qi , Junbai Li","doi":"10.1016/j.cis.2025.103682","DOIUrl":null,"url":null,"abstract":"<div><div>The convergence of inorganic and organic materials at the nanoscale has led to the development of hybrid nanoarchitectonics with unparalleled properties for biomedical applications. These hybrid nanomaterials leverage the synergistic effects of their constituent components to create sophisticated structures capable of addressing complex biomedical challenges. This review provides a comprehensive overview of the state-of-the-art in inorganic and organic hybrid nanoarchitectonics, focusing on their design principles, synthesis methods, and applications in areas such as drug delivery, biosensing, and bioimaging. We discuss the critical factors that influence the biocompatibility, stability, and functionality of these materials and the strategies employed to enhance their performance. Finally, we highlight the current limitations and future perspectives of hybrid nanoarchitectonics in biomedical research, with the aim of inspiring innovative solutions for precision medicine and improved patient care.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"346 ","pages":"Article 103682"},"PeriodicalIF":19.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inorganic and organic hybrid nanoarchitectonics for biomedical application\",\"authors\":\"Xiaoming Zhang , Zhanyao Xu , Yuxian Wei , Wei Qi , Junbai Li\",\"doi\":\"10.1016/j.cis.2025.103682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The convergence of inorganic and organic materials at the nanoscale has led to the development of hybrid nanoarchitectonics with unparalleled properties for biomedical applications. These hybrid nanomaterials leverage the synergistic effects of their constituent components to create sophisticated structures capable of addressing complex biomedical challenges. This review provides a comprehensive overview of the state-of-the-art in inorganic and organic hybrid nanoarchitectonics, focusing on their design principles, synthesis methods, and applications in areas such as drug delivery, biosensing, and bioimaging. We discuss the critical factors that influence the biocompatibility, stability, and functionality of these materials and the strategies employed to enhance their performance. Finally, we highlight the current limitations and future perspectives of hybrid nanoarchitectonics in biomedical research, with the aim of inspiring innovative solutions for precision medicine and improved patient care.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"346 \",\"pages\":\"Article 103682\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625002933\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002933","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Inorganic and organic hybrid nanoarchitectonics for biomedical application
The convergence of inorganic and organic materials at the nanoscale has led to the development of hybrid nanoarchitectonics with unparalleled properties for biomedical applications. These hybrid nanomaterials leverage the synergistic effects of their constituent components to create sophisticated structures capable of addressing complex biomedical challenges. This review provides a comprehensive overview of the state-of-the-art in inorganic and organic hybrid nanoarchitectonics, focusing on their design principles, synthesis methods, and applications in areas such as drug delivery, biosensing, and bioimaging. We discuss the critical factors that influence the biocompatibility, stability, and functionality of these materials and the strategies employed to enhance their performance. Finally, we highlight the current limitations and future perspectives of hybrid nanoarchitectonics in biomedical research, with the aim of inspiring innovative solutions for precision medicine and improved patient care.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.