热液和溶胶-凝胶增强新型镁合金骨再生植入体的体内外特性研究。

IF 5.7
Daniele Bellavia, Francesco Paduano, Silvia Brogini, Roberta Ruggiero, Rosa Maria Marano, Angela Cusanno, Pasquale Guglielmi, Antonio Piccininni, Matteo Pavarini, Agnese D'Agostino, Alessandro Gambardella, Chiara Peres, Gianfranco Palumbo, Roberto Chiesa, Gianluca Zappini, Marco Tatullo, Gianluca Giavaresi
{"title":"热液和溶胶-凝胶增强新型镁合金骨再生植入体的体内外特性研究。","authors":"Daniele Bellavia, Francesco Paduano, Silvia Brogini, Roberta Ruggiero, Rosa Maria Marano, Angela Cusanno, Pasquale Guglielmi, Antonio Piccininni, Matteo Pavarini, Agnese D'Agostino, Alessandro Gambardella, Chiara Peres, Gianfranco Palumbo, Roberto Chiesa, Gianluca Zappini, Marco Tatullo, Gianluca Giavaresi","doi":"10.1039/d5tb01282a","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium alloys are emerging as promising materials for biodegradable orthopedic implants due to their mechanical strength and biocompatibility. However, their clinical use is hindered by rapid degradation and hydrogen gas evolution, which can compromise implant stability and bone healing. This study investigates the biocompatibility, genotoxicity, and osteointegration of magnesium implants (AZ31) produced <i>via</i> Superplastic Forming and enhanced through Hydrothermal and Sol-Gel surface treatments. Both techniques produced uniform Mg(OH)<sub>2</sub>-based coatings, but only alloy with hydrothermal treatment exhibited a markedly slower <i>in vitro</i> degradation. Cytotoxicity and Ames mutagenicity assays confirmed the biocompatibility and non-mutagenic nature of all implant types. <i>In vivo</i> evaluation in a rat femoral defect model revealed successful bone formation around all implant types, with comparable trabecular bone area. However, surface-treated implants showed a significantly lower bone-to-implant contact compared to the control AZ31 alloy, with solgel-treated alloys exhibiting an accelerated degradation rate and higher hydrogen release, which may influence tissue integration. These results highlight the role of surface modification in tuning degradation behavior and bone interface characteristics, with solgel-treated alloys resorbing faster. The combination of superplastic forming processing with strategic surface treatments offers a promising approach to achieving controlled biodegradation, although further optimization is needed to improve bone-implant integration. This work supports the further development of surface-engineered Mg implants for safe and functional orthopedic applications.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vitro</i> and <i>in vivo</i> characterization of novel magnesium alloy implants enhanced by hydrothermal and sol-gel treatments for bone regeneration.\",\"authors\":\"Daniele Bellavia, Francesco Paduano, Silvia Brogini, Roberta Ruggiero, Rosa Maria Marano, Angela Cusanno, Pasquale Guglielmi, Antonio Piccininni, Matteo Pavarini, Agnese D'Agostino, Alessandro Gambardella, Chiara Peres, Gianfranco Palumbo, Roberto Chiesa, Gianluca Zappini, Marco Tatullo, Gianluca Giavaresi\",\"doi\":\"10.1039/d5tb01282a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnesium alloys are emerging as promising materials for biodegradable orthopedic implants due to their mechanical strength and biocompatibility. However, their clinical use is hindered by rapid degradation and hydrogen gas evolution, which can compromise implant stability and bone healing. This study investigates the biocompatibility, genotoxicity, and osteointegration of magnesium implants (AZ31) produced <i>via</i> Superplastic Forming and enhanced through Hydrothermal and Sol-Gel surface treatments. Both techniques produced uniform Mg(OH)<sub>2</sub>-based coatings, but only alloy with hydrothermal treatment exhibited a markedly slower <i>in vitro</i> degradation. Cytotoxicity and Ames mutagenicity assays confirmed the biocompatibility and non-mutagenic nature of all implant types. <i>In vivo</i> evaluation in a rat femoral defect model revealed successful bone formation around all implant types, with comparable trabecular bone area. However, surface-treated implants showed a significantly lower bone-to-implant contact compared to the control AZ31 alloy, with solgel-treated alloys exhibiting an accelerated degradation rate and higher hydrogen release, which may influence tissue integration. These results highlight the role of surface modification in tuning degradation behavior and bone interface characteristics, with solgel-treated alloys resorbing faster. The combination of superplastic forming processing with strategic surface treatments offers a promising approach to achieving controlled biodegradation, although further optimization is needed to improve bone-implant integration. This work supports the further development of surface-engineered Mg implants for safe and functional orthopedic applications.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb01282a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb01282a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

镁合金具有良好的机械强度和生物相容性,是生物可降解骨科植入物的重要材料。然而,它们的临床应用受到快速降解和氢气释放的阻碍,这可能会损害种植体的稳定性和骨愈合。本研究研究了通过超塑性成形制备并通过水热和溶胶-凝胶表面处理增强的镁植入物(AZ31)的生物相容性、遗传毒性和骨整合性。两种技术都能产生均匀的Mg(OH)2基涂层,但只有水热处理的合金表现出明显较慢的体外降解。细胞毒性和Ames诱变试验证实了所有类型的植入物的生物相容性和非诱变性。在大鼠股骨缺损模型中的体内评估显示,所有类型的植入物周围都成功形成了骨,骨小梁面积相当。然而,与对照AZ31合金相比,表面处理的种植体显示出更低的骨与种植体接触,溶胶处理的合金表现出更快的降解速度和更高的氢释放,这可能会影响组织整合。这些结果强调了表面改性在调节降解行为和骨界面特性方面的作用,溶胶处理的合金吸收更快。超塑性成形加工与战略性表面处理的结合为实现可控生物降解提供了一种很有前途的方法,尽管需要进一步优化以改善骨植入体的整合。这项工作支持了表面工程镁植入物的进一步发展,以实现安全和功能的骨科应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vitro and in vivo characterization of novel magnesium alloy implants enhanced by hydrothermal and sol-gel treatments for bone regeneration.

Magnesium alloys are emerging as promising materials for biodegradable orthopedic implants due to their mechanical strength and biocompatibility. However, their clinical use is hindered by rapid degradation and hydrogen gas evolution, which can compromise implant stability and bone healing. This study investigates the biocompatibility, genotoxicity, and osteointegration of magnesium implants (AZ31) produced via Superplastic Forming and enhanced through Hydrothermal and Sol-Gel surface treatments. Both techniques produced uniform Mg(OH)2-based coatings, but only alloy with hydrothermal treatment exhibited a markedly slower in vitro degradation. Cytotoxicity and Ames mutagenicity assays confirmed the biocompatibility and non-mutagenic nature of all implant types. In vivo evaluation in a rat femoral defect model revealed successful bone formation around all implant types, with comparable trabecular bone area. However, surface-treated implants showed a significantly lower bone-to-implant contact compared to the control AZ31 alloy, with solgel-treated alloys exhibiting an accelerated degradation rate and higher hydrogen release, which may influence tissue integration. These results highlight the role of surface modification in tuning degradation behavior and bone interface characteristics, with solgel-treated alloys resorbing faster. The combination of superplastic forming processing with strategic surface treatments offers a promising approach to achieving controlled biodegradation, although further optimization is needed to improve bone-implant integration. This work supports the further development of surface-engineered Mg implants for safe and functional orthopedic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信