碳点满足人工智能:在生物医学工程中的应用。

IF 5.7
Yalei Guo, Yige Liu, Jiajin Yang, Yulu Wu, Haosen Lian, Xiufa Tang, Chunjie Li, Weitong Cui, Zhiyong Guo
{"title":"碳点满足人工智能:在生物医学工程中的应用。","authors":"Yalei Guo, Yige Liu, Jiajin Yang, Yulu Wu, Haosen Lian, Xiufa Tang, Chunjie Li, Weitong Cui, Zhiyong Guo","doi":"10.1039/d5tb00593k","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dots (CDs) are fluorescent carbon nanomaterials typically less than 10 nm in size with excellent water solubility, low toxicity, high biocompatibility, favorable optical properties, and modifiable surface. CDs have great promise in various fields, including bioimaging, sensing, and drug delivery. With the emergence of artificial intelligence (AI) technologies, particularly machine learning (ML) and deep learning (DL) algorithms, new avenues for synthesis optimization, performance improvement, and accurate detection and diagnosis using CDs in biomedical engineering have been opened up. This article aims to present a comprehensive review of the applications of AI in CD research, from material design and performance optimization to material characterization and data analysis. It also addresses the possible areas of application for AI-assisted CDs in biomedical engineering, highlighting the importance and future directions of this interdisciplinary area of research. In addition, the potential role of CDs in advancing AI technologies such as optoelectronic storage devices and neuromorphic computing is explored, as well as the lasting impact of the convergence of CDs and AI on the future course of technological advancement.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon dots meet artificial intelligence: applications in biomedical engineering.\",\"authors\":\"Yalei Guo, Yige Liu, Jiajin Yang, Yulu Wu, Haosen Lian, Xiufa Tang, Chunjie Li, Weitong Cui, Zhiyong Guo\",\"doi\":\"10.1039/d5tb00593k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon dots (CDs) are fluorescent carbon nanomaterials typically less than 10 nm in size with excellent water solubility, low toxicity, high biocompatibility, favorable optical properties, and modifiable surface. CDs have great promise in various fields, including bioimaging, sensing, and drug delivery. With the emergence of artificial intelligence (AI) technologies, particularly machine learning (ML) and deep learning (DL) algorithms, new avenues for synthesis optimization, performance improvement, and accurate detection and diagnosis using CDs in biomedical engineering have been opened up. This article aims to present a comprehensive review of the applications of AI in CD research, from material design and performance optimization to material characterization and data analysis. It also addresses the possible areas of application for AI-assisted CDs in biomedical engineering, highlighting the importance and future directions of this interdisciplinary area of research. In addition, the potential role of CDs in advancing AI technologies such as optoelectronic storage devices and neuromorphic computing is explored, as well as the lasting impact of the convergence of CDs and AI on the future course of technological advancement.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00593k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00593k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳点(CDs)是一种荧光碳纳米材料,通常尺寸小于10nm,具有优异的水溶性、低毒性、高生物相容性、良好的光学性能和可修饰的表面。cd在包括生物成像、传感和药物输送在内的各个领域都有很大的应用前景。随着人工智能(AI)技术,特别是机器学习(ML)和深度学习(DL)算法的出现,为生物医学工程中使用cd进行合成优化、性能改进和准确检测和诊断开辟了新的途径。本文旨在全面回顾人工智能在CD研究中的应用,从材料设计和性能优化到材料表征和数据分析。它还讨论了人工智能辅助cd在生物医学工程中的可能应用领域,突出了这一跨学科研究领域的重要性和未来方向。此外,还探讨了cd在推进人工智能技术(如光电存储设备和神经形态计算)方面的潜在作用,以及cd和人工智能的融合对未来技术进步进程的持久影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon dots meet artificial intelligence: applications in biomedical engineering.

Carbon dots (CDs) are fluorescent carbon nanomaterials typically less than 10 nm in size with excellent water solubility, low toxicity, high biocompatibility, favorable optical properties, and modifiable surface. CDs have great promise in various fields, including bioimaging, sensing, and drug delivery. With the emergence of artificial intelligence (AI) technologies, particularly machine learning (ML) and deep learning (DL) algorithms, new avenues for synthesis optimization, performance improvement, and accurate detection and diagnosis using CDs in biomedical engineering have been opened up. This article aims to present a comprehensive review of the applications of AI in CD research, from material design and performance optimization to material characterization and data analysis. It also addresses the possible areas of application for AI-assisted CDs in biomedical engineering, highlighting the importance and future directions of this interdisciplinary area of research. In addition, the potential role of CDs in advancing AI technologies such as optoelectronic storage devices and neuromorphic computing is explored, as well as the lasting impact of the convergence of CDs and AI on the future course of technological advancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信