利用可公开访问的自动机器学习平台,在肿瘤手术前进行诊断。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Farideh Hosseinzadeh, George Liu, Esmond Tsai, Ahmad Mahmoudi, Angela Yang, Dayoung Kim, Maxime Fieux, Lirit Levi, Soraya Abdul-Hadi, Nithin D Adappa, Jeremiah A Alt, Khaled A Altartoor, Norbert Banyi, Megana Challa, Rakesh Chandra, Michael T Chang, Philip G Chen, Do-Yeon Cho, Camila Rios de Choudens, Naweed Chowdhury, Clariliz Munet Colon, John M DelGaudio, Anthony Del Signore, Christina Dorismond, Daniel Dutra, Shaun Edalati, Thomas S Edwards, Jose Busquets Ferriol, Mathew Geltzeiler, Christos Georgalas, Satish Govindaraj, Jessica W Grayson, David A Gudis, Richard J Harvey, Austin Heffernan, Peter H Hwang, Alfred Marc Iloreta, Nicolaus D Knight, Michael A Kohanski, David K Lerner, Argyro Leventi, Lik Hang Lee, Rory Lubner, Chengetai Mahomva, Conner Massey, Edward D McCoul, Jayakar V Nayak, Ezra Pak-Harvey, James N Palmer, Vivek C Pandrangi, Alkis J Psaltis, Joseph Raviv, Peta Sacks, Ray Sacks, Madeleine Schaberg, Ethan Soudry, Auddie Sweis, Andrew Thamboo, Justin H Turner, Steve X Wang, Sarah K Wise, Bradford A Woodworth, Peter-John Wormald, Zara M Patel
{"title":"利用可公开访问的自动机器学习平台,在肿瘤手术前进行诊断。","authors":"Farideh Hosseinzadeh, George Liu, Esmond Tsai, Ahmad Mahmoudi, Angela Yang, Dayoung Kim, Maxime Fieux, Lirit Levi, Soraya Abdul-Hadi, Nithin D Adappa, Jeremiah A Alt, Khaled A Altartoor, Norbert Banyi, Megana Challa, Rakesh Chandra, Michael T Chang, Philip G Chen, Do-Yeon Cho, Camila Rios de Choudens, Naweed Chowdhury, Clariliz Munet Colon, John M DelGaudio, Anthony Del Signore, Christina Dorismond, Daniel Dutra, Shaun Edalati, Thomas S Edwards, Jose Busquets Ferriol, Mathew Geltzeiler, Christos Georgalas, Satish Govindaraj, Jessica W Grayson, David A Gudis, Richard J Harvey, Austin Heffernan, Peter H Hwang, Alfred Marc Iloreta, Nicolaus D Knight, Michael A Kohanski, David K Lerner, Argyro Leventi, Lik Hang Lee, Rory Lubner, Chengetai Mahomva, Conner Massey, Edward D McCoul, Jayakar V Nayak, Ezra Pak-Harvey, James N Palmer, Vivek C Pandrangi, Alkis J Psaltis, Joseph Raviv, Peta Sacks, Ray Sacks, Madeleine Schaberg, Ethan Soudry, Auddie Sweis, Andrew Thamboo, Justin H Turner, Steve X Wang, Sarah K Wise, Bradford A Woodworth, Peter-John Wormald, Zara M Patel","doi":"10.1038/s43856-025-01134-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In benign tumors with potential for malignant transformation, sampling error during pre-operative biopsy can significantly change patient counseling and surgical planning. Sinonasal inverted papilloma (IP) is the most common benign soft tissue tumor of the sinuses, yet it can undergo malignant transformation to squamous cell carcinoma (IP-SCC), for which the planned surgery could be drastically different. Artificial intelligence (AI) could potentially help with this diagnostic challenge.</p><p><strong>Methods: </strong>CT images from 19 institutions were used to train the Google Cloud Vertex AI platform to distinguish between IP and IP-SCC. The model was evaluated on a holdout test dataset of images from patients whose data were not used for training or validation. Performance metrics of area under the curve (AUC), sensitivity, specificity, accuracy, and F1 were used to assess the model.</p><p><strong>Results: </strong>Here we show CT image data from 958 patients and 41099 individual images that were labeled to train and validate the deep learning image classification model. The model demonstrated a 95.8 % sensitivity in correctly identifying IP-SCC cases from IP, while specificity was robust at 99.7 %. Overall, the model achieved an accuracy of 99.1%.</p><p><strong>Conclusions: </strong>A deep automated machine learning model, created from a publicly available artificial intelligence tool, using pre-operative CT imaging alone, identified malignant transformation of inverted papilloma with excellent accuracy.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"419"},"PeriodicalIF":5.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing a publicly accessible automated machine learning platform to enable diagnosis before tumor surgery.\",\"authors\":\"Farideh Hosseinzadeh, George Liu, Esmond Tsai, Ahmad Mahmoudi, Angela Yang, Dayoung Kim, Maxime Fieux, Lirit Levi, Soraya Abdul-Hadi, Nithin D Adappa, Jeremiah A Alt, Khaled A Altartoor, Norbert Banyi, Megana Challa, Rakesh Chandra, Michael T Chang, Philip G Chen, Do-Yeon Cho, Camila Rios de Choudens, Naweed Chowdhury, Clariliz Munet Colon, John M DelGaudio, Anthony Del Signore, Christina Dorismond, Daniel Dutra, Shaun Edalati, Thomas S Edwards, Jose Busquets Ferriol, Mathew Geltzeiler, Christos Georgalas, Satish Govindaraj, Jessica W Grayson, David A Gudis, Richard J Harvey, Austin Heffernan, Peter H Hwang, Alfred Marc Iloreta, Nicolaus D Knight, Michael A Kohanski, David K Lerner, Argyro Leventi, Lik Hang Lee, Rory Lubner, Chengetai Mahomva, Conner Massey, Edward D McCoul, Jayakar V Nayak, Ezra Pak-Harvey, James N Palmer, Vivek C Pandrangi, Alkis J Psaltis, Joseph Raviv, Peta Sacks, Ray Sacks, Madeleine Schaberg, Ethan Soudry, Auddie Sweis, Andrew Thamboo, Justin H Turner, Steve X Wang, Sarah K Wise, Bradford A Woodworth, Peter-John Wormald, Zara M Patel\",\"doi\":\"10.1038/s43856-025-01134-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In benign tumors with potential for malignant transformation, sampling error during pre-operative biopsy can significantly change patient counseling and surgical planning. Sinonasal inverted papilloma (IP) is the most common benign soft tissue tumor of the sinuses, yet it can undergo malignant transformation to squamous cell carcinoma (IP-SCC), for which the planned surgery could be drastically different. Artificial intelligence (AI) could potentially help with this diagnostic challenge.</p><p><strong>Methods: </strong>CT images from 19 institutions were used to train the Google Cloud Vertex AI platform to distinguish between IP and IP-SCC. The model was evaluated on a holdout test dataset of images from patients whose data were not used for training or validation. Performance metrics of area under the curve (AUC), sensitivity, specificity, accuracy, and F1 were used to assess the model.</p><p><strong>Results: </strong>Here we show CT image data from 958 patients and 41099 individual images that were labeled to train and validate the deep learning image classification model. The model demonstrated a 95.8 % sensitivity in correctly identifying IP-SCC cases from IP, while specificity was robust at 99.7 %. Overall, the model achieved an accuracy of 99.1%.</p><p><strong>Conclusions: </strong>A deep automated machine learning model, created from a publicly available artificial intelligence tool, using pre-operative CT imaging alone, identified malignant transformation of inverted papilloma with excellent accuracy.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"419\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01134-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01134-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:在有恶性转化可能性的良性肿瘤中,术前活检的抽样误差可以显著改变患者的咨询和手术计划。鼻窦内翻性乳头状瘤(IP)是鼻窦最常见的良性软组织肿瘤,但它可以恶性转化为鳞状细胞癌(IP- scc),其手术计划可能会有很大不同。人工智能(AI)可能有助于解决这一诊断挑战。方法:使用来自19家机构的CT图像,训练谷歌Cloud Vertex AI平台区分IP和IP- scc。该模型在未用于训练或验证的患者图像的holdout测试数据集上进行评估。使用曲线下面积(AUC)、敏感性、特异性、准确性和F1等性能指标来评估模型。结果:我们展示了958例患者和41099张个体图像的CT图像数据,这些图像被标记以训练和验证深度学习图像分类模型。该模型显示,从IP中正确识别IP- scc病例的灵敏度为95.8%,而特异性为99.7%。总体而言,该模型达到了99.1%的准确率。结论:利用公开可用的人工智能工具创建的深度自动化机器学习模型,仅使用术前CT成像,即可准确识别内翻性乳头状瘤的恶性转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing a publicly accessible automated machine learning platform to enable diagnosis before tumor surgery.

Background: In benign tumors with potential for malignant transformation, sampling error during pre-operative biopsy can significantly change patient counseling and surgical planning. Sinonasal inverted papilloma (IP) is the most common benign soft tissue tumor of the sinuses, yet it can undergo malignant transformation to squamous cell carcinoma (IP-SCC), for which the planned surgery could be drastically different. Artificial intelligence (AI) could potentially help with this diagnostic challenge.

Methods: CT images from 19 institutions were used to train the Google Cloud Vertex AI platform to distinguish between IP and IP-SCC. The model was evaluated on a holdout test dataset of images from patients whose data were not used for training or validation. Performance metrics of area under the curve (AUC), sensitivity, specificity, accuracy, and F1 were used to assess the model.

Results: Here we show CT image data from 958 patients and 41099 individual images that were labeled to train and validate the deep learning image classification model. The model demonstrated a 95.8 % sensitivity in correctly identifying IP-SCC cases from IP, while specificity was robust at 99.7 %. Overall, the model achieved an accuracy of 99.1%.

Conclusions: A deep automated machine learning model, created from a publicly available artificial intelligence tool, using pre-operative CT imaging alone, identified malignant transformation of inverted papilloma with excellent accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信