Luise Rentz, Lisa Hellwig, Sabine Schneider, Ruth A Schmitz
{"title":"Solo-Cas4在Methanosarcina mazei Gö1中的功能研究。","authors":"Luise Rentz, Lisa Hellwig, Sabine Schneider, Ruth A Schmitz","doi":"10.1093/femsml/uqaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Solo-Cas4 homologs are Cas4-family proteins found outside of canonical CRISPR-Cas operons. Here, we present the biochemical characterization of Solo-Cas4 from <i>Methanosarcina mazei</i> Gö1. We found significantly upregulated <i>solo-cas4</i> transcript levels during stationary phase, while remaining constant under oxygen exposure, temperature shifts, high salt conditions or virus challenge. Heterologously expressed as a SUMO-fusion, the purified tag-free protein displays an absorption peak at 420 nm, indicative of a [4Fe-4S]-cluster. Size-exclusion-chromatography revealed that Solo-Cas4 forms a higher oligomeric complex, with an apparent molecular mass of 318 kDa. <i>In vitro</i> nuclease activity assays demonstrated that Solo-Cas4 cleaves metal-dependent linear dsDNA, with highest cleavage activity in the presence of Mn<sup>2+</sup>, followed by Mg<sup>2+</sup>, while Ca²⁺ and Cu²⁺ result in negligible cleavage. Isoleucine169 was identified to be crucial for catalysis, mutating it to alanine completely abolished nuclease activity. Mutating any of the four conserved cysteines-proposed to coordinate the [4Fe-4S]-cluster did not affect nuclease activity; however, it abolishes metal cluster binding. Supercoiled circular dsDNA was preferentially nicked by Solo-Cas4 in the presence of Mg<sup>2+</sup>, whereas Mn<sup>2+</sup> also led to linearization followed by complete degradation. Besides, ssDNA was cleaved by Solo-Cas4 but with lower activity. In agreement, Microscale thermophoresis analysis revealed strong dsDNA binding with highest affinity to supercoiled circular DNA, and weak ssDNA binding. Overall, these findings indicate that <i>M. mazei</i> Solo-Cas4 is a high oligomeric Cas4-family nuclease that preferentially targets supercoiled dsDNA and is upregulated during stationary growth.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqaf024"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional insights into Solo-Cas4 in <i>Methanosarcina mazei</i> Gö1.\",\"authors\":\"Luise Rentz, Lisa Hellwig, Sabine Schneider, Ruth A Schmitz\",\"doi\":\"10.1093/femsml/uqaf024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solo-Cas4 homologs are Cas4-family proteins found outside of canonical CRISPR-Cas operons. Here, we present the biochemical characterization of Solo-Cas4 from <i>Methanosarcina mazei</i> Gö1. We found significantly upregulated <i>solo-cas4</i> transcript levels during stationary phase, while remaining constant under oxygen exposure, temperature shifts, high salt conditions or virus challenge. Heterologously expressed as a SUMO-fusion, the purified tag-free protein displays an absorption peak at 420 nm, indicative of a [4Fe-4S]-cluster. Size-exclusion-chromatography revealed that Solo-Cas4 forms a higher oligomeric complex, with an apparent molecular mass of 318 kDa. <i>In vitro</i> nuclease activity assays demonstrated that Solo-Cas4 cleaves metal-dependent linear dsDNA, with highest cleavage activity in the presence of Mn<sup>2+</sup>, followed by Mg<sup>2+</sup>, while Ca²⁺ and Cu²⁺ result in negligible cleavage. Isoleucine169 was identified to be crucial for catalysis, mutating it to alanine completely abolished nuclease activity. Mutating any of the four conserved cysteines-proposed to coordinate the [4Fe-4S]-cluster did not affect nuclease activity; however, it abolishes metal cluster binding. Supercoiled circular dsDNA was preferentially nicked by Solo-Cas4 in the presence of Mg<sup>2+</sup>, whereas Mn<sup>2+</sup> also led to linearization followed by complete degradation. Besides, ssDNA was cleaved by Solo-Cas4 but with lower activity. In agreement, Microscale thermophoresis analysis revealed strong dsDNA binding with highest affinity to supercoiled circular DNA, and weak ssDNA binding. Overall, these findings indicate that <i>M. mazei</i> Solo-Cas4 is a high oligomeric Cas4-family nuclease that preferentially targets supercoiled dsDNA and is upregulated during stationary growth.</p>\",\"PeriodicalId\":74189,\"journal\":{\"name\":\"microLife\",\"volume\":\"6 \",\"pages\":\"uqaf024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsml/uqaf024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqaf024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Functional insights into Solo-Cas4 in Methanosarcina mazei Gö1.
Solo-Cas4 homologs are Cas4-family proteins found outside of canonical CRISPR-Cas operons. Here, we present the biochemical characterization of Solo-Cas4 from Methanosarcina mazei Gö1. We found significantly upregulated solo-cas4 transcript levels during stationary phase, while remaining constant under oxygen exposure, temperature shifts, high salt conditions or virus challenge. Heterologously expressed as a SUMO-fusion, the purified tag-free protein displays an absorption peak at 420 nm, indicative of a [4Fe-4S]-cluster. Size-exclusion-chromatography revealed that Solo-Cas4 forms a higher oligomeric complex, with an apparent molecular mass of 318 kDa. In vitro nuclease activity assays demonstrated that Solo-Cas4 cleaves metal-dependent linear dsDNA, with highest cleavage activity in the presence of Mn2+, followed by Mg2+, while Ca²⁺ and Cu²⁺ result in negligible cleavage. Isoleucine169 was identified to be crucial for catalysis, mutating it to alanine completely abolished nuclease activity. Mutating any of the four conserved cysteines-proposed to coordinate the [4Fe-4S]-cluster did not affect nuclease activity; however, it abolishes metal cluster binding. Supercoiled circular dsDNA was preferentially nicked by Solo-Cas4 in the presence of Mg2+, whereas Mn2+ also led to linearization followed by complete degradation. Besides, ssDNA was cleaved by Solo-Cas4 but with lower activity. In agreement, Microscale thermophoresis analysis revealed strong dsDNA binding with highest affinity to supercoiled circular DNA, and weak ssDNA binding. Overall, these findings indicate that M. mazei Solo-Cas4 is a high oligomeric Cas4-family nuclease that preferentially targets supercoiled dsDNA and is upregulated during stationary growth.