{"title":"DNA甲基化在哺乳动物早期发育中的作用和调控。","authors":"Elena Ivanova, Gavin Kelsey","doi":"10.1146/annurev-animal-030424-085652","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation was the earliest epigenetic mark discovered-it is essential for mammalian development and forms a molecular memory that can transcend generations, as in the phenomenon of genomic imprinting. Set against this long-term potential, methylation is dynamic across the life cycle, with genome-wide changes at germ-cell specification, gametogenesis, and preimplantation development accompanying major shifts in cell potency. With a tool kit of precision genetic reagents, the mouse has been a mainstay in developing mechanistic understanding of how methylation is targeted to the genome and in exploring its susceptibility to environmental factors, such as parental diet. The availability of genome sequence from many more species combined with the ability to profile methylation and other epigenetic marks in very small numbers of cells now provides rich epigenomic information from other mammals. This information has begun to reveal both similarities as well as surprising differences in the way in which methylation is patterned across the genome among mammals. Such knowledge will be critical in assessing the outcomes of interventions during assisted reproduction in human clinical practice and livestock production.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roles and Regulation of DNA Methylation in Early Mammalian Development.\",\"authors\":\"Elena Ivanova, Gavin Kelsey\",\"doi\":\"10.1146/annurev-animal-030424-085652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA methylation was the earliest epigenetic mark discovered-it is essential for mammalian development and forms a molecular memory that can transcend generations, as in the phenomenon of genomic imprinting. Set against this long-term potential, methylation is dynamic across the life cycle, with genome-wide changes at germ-cell specification, gametogenesis, and preimplantation development accompanying major shifts in cell potency. With a tool kit of precision genetic reagents, the mouse has been a mainstay in developing mechanistic understanding of how methylation is targeted to the genome and in exploring its susceptibility to environmental factors, such as parental diet. The availability of genome sequence from many more species combined with the ability to profile methylation and other epigenetic marks in very small numbers of cells now provides rich epigenomic information from other mammals. This information has begun to reveal both similarities as well as surprising differences in the way in which methylation is patterned across the genome among mammals. Such knowledge will be critical in assessing the outcomes of interventions during assisted reproduction in human clinical practice and livestock production.</p>\",\"PeriodicalId\":48953,\"journal\":{\"name\":\"Annual Review of Animal Biosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Animal Biosciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-animal-030424-085652\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Animal Biosciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-animal-030424-085652","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Roles and Regulation of DNA Methylation in Early Mammalian Development.
DNA methylation was the earliest epigenetic mark discovered-it is essential for mammalian development and forms a molecular memory that can transcend generations, as in the phenomenon of genomic imprinting. Set against this long-term potential, methylation is dynamic across the life cycle, with genome-wide changes at germ-cell specification, gametogenesis, and preimplantation development accompanying major shifts in cell potency. With a tool kit of precision genetic reagents, the mouse has been a mainstay in developing mechanistic understanding of how methylation is targeted to the genome and in exploring its susceptibility to environmental factors, such as parental diet. The availability of genome sequence from many more species combined with the ability to profile methylation and other epigenetic marks in very small numbers of cells now provides rich epigenomic information from other mammals. This information has begun to reveal both similarities as well as surprising differences in the way in which methylation is patterned across the genome among mammals. Such knowledge will be critical in assessing the outcomes of interventions during assisted reproduction in human clinical practice and livestock production.
期刊介绍:
The Annual Review of Animal Biosciences is primarily dedicated to the fields of biotechnology, genetics, genomics, and breeding, with a special focus on veterinary medicine. This includes veterinary pathobiology, infectious diseases and vaccine development, and conservation and zoo biology. The publication aims to address the needs of scientists studying both wild and domesticated animal species, veterinarians, conservation biologists, and geneticists.