人工智能通过表型预测犬皮肤肥大细胞瘤的c-KIT外显子11基因型:人类观察者能了解吗?

IF 1.7 2区 农林科学 Q2 PATHOLOGY
Chloé Puget, Jonathan Ganz, Christof A Bertram, Thomas Conrad, Malte Baeblich, Anne Voss, Katharina Landmann, Alexander F H Haake, Andreas Spree, Svenja Hartung, Leonore Aeschlimann, Sara Soto, Simone de Brot, Martina Dettwiler, Heike Aupperle-Lellbach, Pompei Bolfa, Alexander Bartel, Matti Kiupel, Katharina Breininger, Marc Aubreville, Robert Klopfleisch
{"title":"人工智能通过表型预测犬皮肤肥大细胞瘤的c-KIT外显子11基因型:人类观察者能了解吗?","authors":"Chloé Puget, Jonathan Ganz, Christof A Bertram, Thomas Conrad, Malte Baeblich, Anne Voss, Katharina Landmann, Alexander F H Haake, Andreas Spree, Svenja Hartung, Leonore Aeschlimann, Sara Soto, Simone de Brot, Martina Dettwiler, Heike Aupperle-Lellbach, Pompei Bolfa, Alexander Bartel, Matti Kiupel, Katharina Breininger, Marc Aubreville, Robert Klopfleisch","doi":"10.1177/03009858251380284","DOIUrl":null,"url":null,"abstract":"<p><p>Canine cutaneous mast cell tumors (ccMCTs) are frequent neoplasms with variable biological behaviors. Internal tandem duplication mutations in <i>c-KIT</i> exon 11 (<i>c-KIT</i>-11-ITD) are associated with poor prognosis but predict therapeutic response to tyrosine kinase inhibitors. In a previous work, deep learning algorithms managed to predict the presence of <i>c-KIT</i>-11-ITD on digitalized hematoxylin and eosin-stained histological slides (whole-slide images, WSIs) in up to 87% of cases, suggesting the existence of morphological features characterizing ccMCTs carrying <i>c-KIT</i>-11-ITD. This 3-stage blinded study aimed to identify morphological features indicative of <i>c-KIT</i>-11-ITD and to evaluate the ability of human observers to learn this task. 17 untrained pathologists first classified 8 WSIs and 200 image patches (highly relevant for algorithmic classification) of ccMCTs as either positive or negative for <i>c-KIT</i>-11-ITD. Second, they self-trained to recognize <i>c-KIT</i>-11-ITD by looking at the same WSIs and patches correctly sorted. Third, pathologists classified 15 new WSIs and 200 new patches according to <i>c-KIT</i>-11-ITD status. In addition, participants reported microscopic features they considered relevant for their decision. Without training, participants correctly classified the <i>c-KIT</i>-11-ITD status of 63%-88% of WSIs and 43%-55% of patches. With self-training, 25%-38% of WSIs and 55%-56% of patches were correctly classified. High cellular pleomorphism, anisokaryosis, and sparse cytoplasmic granulation were commonly suggested as features associated with <i>c-KIT</i>-11-ITD-positive ccMCTs, none of which showed reliable predictivity in a follow-up study. The results indicate that transfer of algorithmic skills to the human observer is difficult. A <i>c-KIT</i>-11-ITD-specific morphological feature remains to be extracted from the artificial intelligence model.</p>","PeriodicalId":23513,"journal":{"name":"Veterinary Pathology","volume":" ","pages":"3009858251380284"},"PeriodicalIF":1.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence predicts <i>c-KIT</i> exon 11 genotype by phenotype in canine cutaneous mast cell tumors: Can human observers learn it?\",\"authors\":\"Chloé Puget, Jonathan Ganz, Christof A Bertram, Thomas Conrad, Malte Baeblich, Anne Voss, Katharina Landmann, Alexander F H Haake, Andreas Spree, Svenja Hartung, Leonore Aeschlimann, Sara Soto, Simone de Brot, Martina Dettwiler, Heike Aupperle-Lellbach, Pompei Bolfa, Alexander Bartel, Matti Kiupel, Katharina Breininger, Marc Aubreville, Robert Klopfleisch\",\"doi\":\"10.1177/03009858251380284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Canine cutaneous mast cell tumors (ccMCTs) are frequent neoplasms with variable biological behaviors. Internal tandem duplication mutations in <i>c-KIT</i> exon 11 (<i>c-KIT</i>-11-ITD) are associated with poor prognosis but predict therapeutic response to tyrosine kinase inhibitors. In a previous work, deep learning algorithms managed to predict the presence of <i>c-KIT</i>-11-ITD on digitalized hematoxylin and eosin-stained histological slides (whole-slide images, WSIs) in up to 87% of cases, suggesting the existence of morphological features characterizing ccMCTs carrying <i>c-KIT</i>-11-ITD. This 3-stage blinded study aimed to identify morphological features indicative of <i>c-KIT</i>-11-ITD and to evaluate the ability of human observers to learn this task. 17 untrained pathologists first classified 8 WSIs and 200 image patches (highly relevant for algorithmic classification) of ccMCTs as either positive or negative for <i>c-KIT</i>-11-ITD. Second, they self-trained to recognize <i>c-KIT</i>-11-ITD by looking at the same WSIs and patches correctly sorted. Third, pathologists classified 15 new WSIs and 200 new patches according to <i>c-KIT</i>-11-ITD status. In addition, participants reported microscopic features they considered relevant for their decision. Without training, participants correctly classified the <i>c-KIT</i>-11-ITD status of 63%-88% of WSIs and 43%-55% of patches. With self-training, 25%-38% of WSIs and 55%-56% of patches were correctly classified. High cellular pleomorphism, anisokaryosis, and sparse cytoplasmic granulation were commonly suggested as features associated with <i>c-KIT</i>-11-ITD-positive ccMCTs, none of which showed reliable predictivity in a follow-up study. The results indicate that transfer of algorithmic skills to the human observer is difficult. A <i>c-KIT</i>-11-ITD-specific morphological feature remains to be extracted from the artificial intelligence model.</p>\",\"PeriodicalId\":23513,\"journal\":{\"name\":\"Veterinary Pathology\",\"volume\":\" \",\"pages\":\"3009858251380284\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1177/03009858251380284\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/03009858251380284","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

犬皮肤肥大细胞瘤(ccmct)是一种具有多种生物学行为的常见肿瘤。c-KIT外显子11 (c-KIT-11- itd)的内部串联重复突变与预后不良相关,但预测对酪氨酸激酶抑制剂的治疗反应。在之前的一项研究中,深度学习算法成功预测了多达87%的病例中数字化苏木精和伊红染色组织学切片(整片图像,wsi)上c-KIT-11-ITD的存在,这表明存在携带c-KIT-11-ITD的ccmct的形态学特征。这项为期3个阶段的盲法研究旨在识别c-KIT-11-ITD的形态学特征,并评估人类观察者学习这项任务的能力。17名未经训练的病理学家首先将8个wsi和200个图像补丁(与算法分类高度相关)的ccmct分类为c-KIT-11-ITD阳性或阴性。其次,他们自我训练,通过查看正确排序的相同wsi和补丁来识别c-KIT-11-ITD。第三,病理学家根据c-KIT-11-ITD状态分类出15个新的wsi和200个新的补片。此外,参与者还报告了他们认为与他们的决定相关的微观特征。未经培训,参与者正确分类了63%-88%的wsi和43%-55%的贴片的c-KIT-11-ITD状态。通过自我训练,25% ~ 38%的wsi和55% ~ 56%的补丁被正确分类。高细胞多形性、异核性和稀疏的细胞质肉芽通常被认为是c- kit -11- itd阳性ccmct的特征,但在随访研究中,这些特征都没有显示出可靠的预测性。结果表明,将算法技能转移到人类观察者身上是困难的。c- kit -11- itd特异性形态学特征仍有待从人工智能模型中提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence predicts c-KIT exon 11 genotype by phenotype in canine cutaneous mast cell tumors: Can human observers learn it?

Canine cutaneous mast cell tumors (ccMCTs) are frequent neoplasms with variable biological behaviors. Internal tandem duplication mutations in c-KIT exon 11 (c-KIT-11-ITD) are associated with poor prognosis but predict therapeutic response to tyrosine kinase inhibitors. In a previous work, deep learning algorithms managed to predict the presence of c-KIT-11-ITD on digitalized hematoxylin and eosin-stained histological slides (whole-slide images, WSIs) in up to 87% of cases, suggesting the existence of morphological features characterizing ccMCTs carrying c-KIT-11-ITD. This 3-stage blinded study aimed to identify morphological features indicative of c-KIT-11-ITD and to evaluate the ability of human observers to learn this task. 17 untrained pathologists first classified 8 WSIs and 200 image patches (highly relevant for algorithmic classification) of ccMCTs as either positive or negative for c-KIT-11-ITD. Second, they self-trained to recognize c-KIT-11-ITD by looking at the same WSIs and patches correctly sorted. Third, pathologists classified 15 new WSIs and 200 new patches according to c-KIT-11-ITD status. In addition, participants reported microscopic features they considered relevant for their decision. Without training, participants correctly classified the c-KIT-11-ITD status of 63%-88% of WSIs and 43%-55% of patches. With self-training, 25%-38% of WSIs and 55%-56% of patches were correctly classified. High cellular pleomorphism, anisokaryosis, and sparse cytoplasmic granulation were commonly suggested as features associated with c-KIT-11-ITD-positive ccMCTs, none of which showed reliable predictivity in a follow-up study. The results indicate that transfer of algorithmic skills to the human observer is difficult. A c-KIT-11-ITD-specific morphological feature remains to be extracted from the artificial intelligence model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Pathology
Veterinary Pathology 农林科学-病理学
CiteScore
4.70
自引率
8.30%
发文量
99
审稿时长
2 months
期刊介绍: Veterinary Pathology (VET) is the premier international publication of basic and applied research involving domestic, laboratory, wildlife, marine and zoo animals, and poultry. Bridging the divide between natural and experimental diseases, the journal details the diagnostic investigations of diseases of animals; reports experimental studies on mechanisms of specific processes; provides unique insights into animal models of human disease; and presents studies on environmental and pharmaceutical hazards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信