种子分类的可见光和近红外光谱双峰图像数据集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Maksim Kukushkin, Martin Bogdan, Simon Goertz, Jan-Ole Callsen, Eric Oldenburg, Matthias Enders, Thomas Schmid
{"title":"种子分类的可见光和近红外光谱双峰图像数据集。","authors":"Maksim Kukushkin, Martin Bogdan, Simon Goertz, Jan-Ole Callsen, Eric Oldenburg, Matthias Enders, Thomas Schmid","doi":"10.1038/s41597-025-05979-6","DOIUrl":null,"url":null,"abstract":"<p><p>The success of deep learning in image classification has been largely underpinned by large-scale datasets, such as ImageNet, which have significantly advanced multi-class classification for RGB and grayscale images. However, datasets that capture spectral information beyond the visible spectrum remain scarce, despite their high potential, especially in agriculture, medicine and remote sensing. To address this gap in the agricultural domain, we present a thoroughly curated bimodal seed image dataset comprising paired RGB and hyperspectral images for 10 plant species, making it one of the largest bimodal seed datasets available. We describe the methodology for data collection and preprocessing and benchmark several deep learning models on the dataset to evaluate their multi-class classification performance. By contributing a high-quality dataset, our manuscript offers a valuable resource for studying spectral, spatial and morphological properties of seeds, thereby opening new avenues for research and applications.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1629"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bimodal image dataset for seed classification from the visible and near-infrared spectrum.\",\"authors\":\"Maksim Kukushkin, Martin Bogdan, Simon Goertz, Jan-Ole Callsen, Eric Oldenburg, Matthias Enders, Thomas Schmid\",\"doi\":\"10.1038/s41597-025-05979-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The success of deep learning in image classification has been largely underpinned by large-scale datasets, such as ImageNet, which have significantly advanced multi-class classification for RGB and grayscale images. However, datasets that capture spectral information beyond the visible spectrum remain scarce, despite their high potential, especially in agriculture, medicine and remote sensing. To address this gap in the agricultural domain, we present a thoroughly curated bimodal seed image dataset comprising paired RGB and hyperspectral images for 10 plant species, making it one of the largest bimodal seed datasets available. We describe the methodology for data collection and preprocessing and benchmark several deep learning models on the dataset to evaluate their multi-class classification performance. By contributing a high-quality dataset, our manuscript offers a valuable resource for studying spectral, spatial and morphological properties of seeds, thereby opening new avenues for research and applications.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1629\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05979-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05979-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

深度学习在图像分类中的成功在很大程度上是由大规模数据集支撑的,例如ImageNet,它在RGB和灰度图像的多类分类方面取得了显著进展。然而,捕获可见光光谱以外的光谱信息的数据集仍然很少,尽管它们具有很大的潜力,特别是在农业、医学和遥感领域。为了解决农业领域的这一差距,我们提出了一个完整的双峰种子图像数据集,包括10种植物的配对RGB和高光谱图像,使其成为最大的双峰种子数据集之一。我们描述了数据收集和预处理的方法,并在数据集上对几个深度学习模型进行了基准测试,以评估它们的多类分类性能。通过提供高质量的数据集,我们的手稿为研究种子的光谱、空间和形态特性提供了宝贵的资源,从而为研究和应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bimodal image dataset for seed classification from the visible and near-infrared spectrum.

The success of deep learning in image classification has been largely underpinned by large-scale datasets, such as ImageNet, which have significantly advanced multi-class classification for RGB and grayscale images. However, datasets that capture spectral information beyond the visible spectrum remain scarce, despite their high potential, especially in agriculture, medicine and remote sensing. To address this gap in the agricultural domain, we present a thoroughly curated bimodal seed image dataset comprising paired RGB and hyperspectral images for 10 plant species, making it one of the largest bimodal seed datasets available. We describe the methodology for data collection and preprocessing and benchmark several deep learning models on the dataset to evaluate their multi-class classification performance. By contributing a high-quality dataset, our manuscript offers a valuable resource for studying spectral, spatial and morphological properties of seeds, thereby opening new avenues for research and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信