利用微流体梯度装置生成空间图案的人类神经管样结构。

IF 16 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xufeng Xue, Omar M Rahman, Shiyu Sun, Jeyoon Bok, Aoife Tang, Jianping Fu
{"title":"利用微流体梯度装置生成空间图案的人类神经管样结构。","authors":"Xufeng Xue, Omar M Rahman, Shiyu Sun, Jeyoon Bok, Aoife Tang, Jianping Fu","doi":"10.1038/s41596-025-01266-1","DOIUrl":null,"url":null,"abstract":"<p><p>The functional complexity and anatomical organization of the nervous system are established during regional patterning of its embryonic precursor-the neural tube. Human pluripotent stem (hPS) cell-based models have emerged as valuable complements to animal models for studying neural development. Here we present the design and implementation of a microfluidic gradient device for modeling human neural tube formation and regional patterning with hPS cells. The microfluidic device enables the formation of tubular or spherical colonies of hPS cells at prescribed locations within microfluidic channels, allowing the cell colonies to form lumenal structures while being exposed to well-controlled chemical gradients for rostral-caudal and/or dorsal-ventral patterning, resulting in the formation of a microfluidic neural tube-like structure (μNTLS) or a forebrain-like structure (μFBLS). The μNTLS recapitulates important hallmarks of early human neural development, including well-defined lumenal morphologies, spatially organized regional marker expression, emergence of secondary signaling centers and the development of neural crest cells. The dorsal-ventral patterned μFBLS further recapitulates spatially segregated dorsal and ventral regions, as well as the layered segregation of early neurons from neural progenitors, mimicking human forebrain pallium and subpallium development. Both the μNTLS and μFBLS are compatible with long-term culture, live imaging, immunofluorescence staining and single-cell sequencing, serving as robust systems for studying human neurodevelopment and disease. This protocol can be implemented by a researcher with polydimethylsiloxane soft lithography and cell culture experience and takes ~8-41 d to complete, depending on the types of neural structure to model and their developmental stages, with an option for prolonged culture to promote neuronal maturation.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of spatially patterned human neural tube-like structures using microfluidic gradient devices.\",\"authors\":\"Xufeng Xue, Omar M Rahman, Shiyu Sun, Jeyoon Bok, Aoife Tang, Jianping Fu\",\"doi\":\"10.1038/s41596-025-01266-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functional complexity and anatomical organization of the nervous system are established during regional patterning of its embryonic precursor-the neural tube. Human pluripotent stem (hPS) cell-based models have emerged as valuable complements to animal models for studying neural development. Here we present the design and implementation of a microfluidic gradient device for modeling human neural tube formation and regional patterning with hPS cells. The microfluidic device enables the formation of tubular or spherical colonies of hPS cells at prescribed locations within microfluidic channels, allowing the cell colonies to form lumenal structures while being exposed to well-controlled chemical gradients for rostral-caudal and/or dorsal-ventral patterning, resulting in the formation of a microfluidic neural tube-like structure (μNTLS) or a forebrain-like structure (μFBLS). The μNTLS recapitulates important hallmarks of early human neural development, including well-defined lumenal morphologies, spatially organized regional marker expression, emergence of secondary signaling centers and the development of neural crest cells. The dorsal-ventral patterned μFBLS further recapitulates spatially segregated dorsal and ventral regions, as well as the layered segregation of early neurons from neural progenitors, mimicking human forebrain pallium and subpallium development. Both the μNTLS and μFBLS are compatible with long-term culture, live imaging, immunofluorescence staining and single-cell sequencing, serving as robust systems for studying human neurodevelopment and disease. This protocol can be implemented by a researcher with polydimethylsiloxane soft lithography and cell culture experience and takes ~8-41 d to complete, depending on the types of neural structure to model and their developmental stages, with an option for prolonged culture to promote neuronal maturation.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01266-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01266-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

神经系统的功能复杂性和解剖组织是在其胚胎前体-神经管的区域模式中建立的。人类多能干细胞(hPS)模型已成为研究神经发育的动物模型的重要补充。在这里,我们提出了一种微流体梯度装置的设计和实现,用于模拟人类神经管的形成和hPS细胞的区域模式。微流控装置使hPS细胞在微流控通道内的指定位置形成管状或球形集落,使细胞集落形成管状结构,同时暴露于良好控制的化学梯度下进行喙端-尾端和/或背端-腹侧模式,从而形成微流控神经管样结构(μNTLS)或前脑样结构(μFBLS)。μNTLS重现了早期人类神经发育的重要特征,包括明确的管腔形态、空间组织的区域标记物表达、次级信号中心的出现和神经嵴细胞的发育。背-腹侧图μFBLS进一步再现了空间分离的背侧和腹侧区域,以及神经祖细胞早期神经元的分层分离,模拟了人类前脑苍白球和苍白球下的发育。μNTLS和μFBLS均可用于长期培养、活体成像、免疫荧光染色和单细胞测序,可作为研究人类神经发育和疾病的可靠系统。该方案可由具有聚二甲基硅氧烷软光镜和细胞培养经验的研究人员实施,完成时间约为8-41天,具体取决于要建模的神经结构类型及其发育阶段,并可选择延长培养时间以促进神经元成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of spatially patterned human neural tube-like structures using microfluidic gradient devices.

The functional complexity and anatomical organization of the nervous system are established during regional patterning of its embryonic precursor-the neural tube. Human pluripotent stem (hPS) cell-based models have emerged as valuable complements to animal models for studying neural development. Here we present the design and implementation of a microfluidic gradient device for modeling human neural tube formation and regional patterning with hPS cells. The microfluidic device enables the formation of tubular or spherical colonies of hPS cells at prescribed locations within microfluidic channels, allowing the cell colonies to form lumenal structures while being exposed to well-controlled chemical gradients for rostral-caudal and/or dorsal-ventral patterning, resulting in the formation of a microfluidic neural tube-like structure (μNTLS) or a forebrain-like structure (μFBLS). The μNTLS recapitulates important hallmarks of early human neural development, including well-defined lumenal morphologies, spatially organized regional marker expression, emergence of secondary signaling centers and the development of neural crest cells. The dorsal-ventral patterned μFBLS further recapitulates spatially segregated dorsal and ventral regions, as well as the layered segregation of early neurons from neural progenitors, mimicking human forebrain pallium and subpallium development. Both the μNTLS and μFBLS are compatible with long-term culture, live imaging, immunofluorescence staining and single-cell sequencing, serving as robust systems for studying human neurodevelopment and disease. This protocol can be implemented by a researcher with polydimethylsiloxane soft lithography and cell culture experience and takes ~8-41 d to complete, depending on the types of neural structure to model and their developmental stages, with an option for prolonged culture to promote neuronal maturation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信