功能磁共振成像中快速扫描循环伏安法测量脑电化活动。

IF 16 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Tatiana A Shnitko, Lindsay R Walton, Tong-Yu Rainey Peng, Sung-Ho Lee, Tzu-Hao Harry Chao, Matthew D Verber, R Mark Wightman, Yen-Yu Ian Shih
{"title":"功能磁共振成像中快速扫描循环伏安法测量脑电化活动。","authors":"Tatiana A Shnitko, Lindsay R Walton, Tong-Yu Rainey Peng, Sung-Ho Lee, Tzu-Hao Harry Chao, Matthew D Verber, R Mark Wightman, Yen-Yu Ian Shih","doi":"10.1038/s41596-025-01250-9","DOIUrl":null,"url":null,"abstract":"<p><p>One of the challenges associated with functional magnetic resonance imaging (MRI) studies is integrating and causally linking complementary functional information, often obtained using different modalities. Achieving this integration requires synchronizing the spatiotemporal multimodal datasets without mutual interference. Here we present a protocol for integrating electrochemical measurements with functional MRI, enabling the simultaneous assessment of neurochemical dynamics and brain-wide activity. This Protocol addresses challenges such as artifact interference and hardware incompatibility by providing magnetic resonance-compatible electrode designs, synchronized data acquisition settings and detailed in vitro and in vivo procedures. Using dopamine as an example, the protocol demonstrates how to measure neurochemical signals with fast-scan cyclic voltammetry (FSCV) in a flow-cell setup or in vivo in rats during MRI scanning. These procedures are adaptable to various analytes measurable by FSCV or other electrochemical techniques, such as amperometry and aptamer-based sensing. By offering step-by-step guidance, this Protocol facilitates studies of neurovascular coupling with the neurochemical basis of large-scale brain networks in health and disease and could be adapted in clinical settings. The procedure requires expertise in MRI, FSCV and stereotaxic surgeries and can be completed in 7 days.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of electrochemical brain activity with fast-scan cyclic voltammetry during functional magnetic resonance imaging.\",\"authors\":\"Tatiana A Shnitko, Lindsay R Walton, Tong-Yu Rainey Peng, Sung-Ho Lee, Tzu-Hao Harry Chao, Matthew D Verber, R Mark Wightman, Yen-Yu Ian Shih\",\"doi\":\"10.1038/s41596-025-01250-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the challenges associated with functional magnetic resonance imaging (MRI) studies is integrating and causally linking complementary functional information, often obtained using different modalities. Achieving this integration requires synchronizing the spatiotemporal multimodal datasets without mutual interference. Here we present a protocol for integrating electrochemical measurements with functional MRI, enabling the simultaneous assessment of neurochemical dynamics and brain-wide activity. This Protocol addresses challenges such as artifact interference and hardware incompatibility by providing magnetic resonance-compatible electrode designs, synchronized data acquisition settings and detailed in vitro and in vivo procedures. Using dopamine as an example, the protocol demonstrates how to measure neurochemical signals with fast-scan cyclic voltammetry (FSCV) in a flow-cell setup or in vivo in rats during MRI scanning. These procedures are adaptable to various analytes measurable by FSCV or other electrochemical techniques, such as amperometry and aptamer-based sensing. By offering step-by-step guidance, this Protocol facilitates studies of neurovascular coupling with the neurochemical basis of large-scale brain networks in health and disease and could be adapted in clinical settings. The procedure requires expertise in MRI, FSCV and stereotaxic surgeries and can be completed in 7 days.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01250-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01250-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

与功能性磁共振成像(MRI)研究相关的挑战之一是整合和因果联系互补的功能信息,通常使用不同的方式获得。实现这种整合需要同步时空多模态数据集而不相互干扰。在这里,我们提出了一种将电化学测量与功能MRI相结合的方案,能够同时评估神经化学动力学和全脑活动。该协议通过提供磁共振兼容电极设计、同步数据采集设置和详细的体外和体内程序,解决了诸如伪影干扰和硬件不兼容等挑战。以多巴胺为例,该方案演示了如何在流式细胞装置或MRI扫描期间在大鼠体内使用快速扫描循环伏安法(FSCV)测量神经化学信号。这些程序适用于FSCV或其他电化学技术测量的各种分析物,例如安培法和基于适配体的传感。通过提供逐步指导,本议定书促进了健康和疾病中大规模脑网络神经化学基础的神经血管耦合研究,并可在临床环境中加以调整。该手术需要MRI、FSCV和立体定向手术方面的专业知识,可在7天内完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of electrochemical brain activity with fast-scan cyclic voltammetry during functional magnetic resonance imaging.

One of the challenges associated with functional magnetic resonance imaging (MRI) studies is integrating and causally linking complementary functional information, often obtained using different modalities. Achieving this integration requires synchronizing the spatiotemporal multimodal datasets without mutual interference. Here we present a protocol for integrating electrochemical measurements with functional MRI, enabling the simultaneous assessment of neurochemical dynamics and brain-wide activity. This Protocol addresses challenges such as artifact interference and hardware incompatibility by providing magnetic resonance-compatible electrode designs, synchronized data acquisition settings and detailed in vitro and in vivo procedures. Using dopamine as an example, the protocol demonstrates how to measure neurochemical signals with fast-scan cyclic voltammetry (FSCV) in a flow-cell setup or in vivo in rats during MRI scanning. These procedures are adaptable to various analytes measurable by FSCV or other electrochemical techniques, such as amperometry and aptamer-based sensing. By offering step-by-step guidance, this Protocol facilitates studies of neurovascular coupling with the neurochemical basis of large-scale brain networks in health and disease and could be adapted in clinical settings. The procedure requires expertise in MRI, FSCV and stereotaxic surgeries and can be completed in 7 days.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信