Zesheng Wang, Xulin Xie, Yicen Zhou, Huimin He, Zhenjun Guo, Zhengdong Zhou, Beilei Liu, Jiayu Sun, Wenxiu Li, Qichang Nie, Jun Dai, Wenkai Yi, Xiaoyu Zhou, Jian Yan, Mengsu Yang
{"title":"三维纳米纤维基质刚度调节细胞外囊泡货物和促肿瘤功能。","authors":"Zesheng Wang, Xulin Xie, Yicen Zhou, Huimin He, Zhenjun Guo, Zhengdong Zhou, Beilei Liu, Jiayu Sun, Wenxiu Li, Qichang Nie, Jun Dai, Wenkai Yi, Xiaoyu Zhou, Jian Yan, Mengsu Yang","doi":"10.1002/jev2.70165","DOIUrl":null,"url":null,"abstract":"<p>Extracellular matrix (ECM) stiffness and extracellular vesicles (EVs) are critical regulators of tumour progression, yet their interaction in three-dimensional (3D) microenvironments remains poorly understood. Most studies on ECM stiffness and EV biology rely on 2D cultures, which do not capture the complexity of the tumour microenvironment. Here, a biomimetic 3D nanofibrillar ECM model based on a cellulose nanofibril hydrogel was established to assess stiffness-dependent changes in EV properties and functions. EVs derived from stiff matrices (StEVs) exhibited distinct physicochemical characteristics and carried unique protein and microRNA cargo compared with those from soft matrices (SoEVs). Functionally, StEVs more potently promoted tumour cell proliferation and migration, while in vivo mouse models further demonstrated that StEVs enhanced tumour growth. Multi-omics analyses and pharmacological inhibition studies revealed that StEVs activate the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MAPK/ERK1/2) signalling pathway in recipient cells. These findings highlight the mechanobiological regulation of EV-mediated intercellular communication within 3D ECM environments and demonstrate how matrix stiffness shapes EV cargo and pro-tumour activity.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 10","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70165","citationCount":"0","resultStr":"{\"title\":\"3D Nanofibrillar Matrix Stiffness Modulates Extracellular Vesicle Cargo and Pro-Tumour Functions\",\"authors\":\"Zesheng Wang, Xulin Xie, Yicen Zhou, Huimin He, Zhenjun Guo, Zhengdong Zhou, Beilei Liu, Jiayu Sun, Wenxiu Li, Qichang Nie, Jun Dai, Wenkai Yi, Xiaoyu Zhou, Jian Yan, Mengsu Yang\",\"doi\":\"10.1002/jev2.70165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular matrix (ECM) stiffness and extracellular vesicles (EVs) are critical regulators of tumour progression, yet their interaction in three-dimensional (3D) microenvironments remains poorly understood. Most studies on ECM stiffness and EV biology rely on 2D cultures, which do not capture the complexity of the tumour microenvironment. Here, a biomimetic 3D nanofibrillar ECM model based on a cellulose nanofibril hydrogel was established to assess stiffness-dependent changes in EV properties and functions. EVs derived from stiff matrices (StEVs) exhibited distinct physicochemical characteristics and carried unique protein and microRNA cargo compared with those from soft matrices (SoEVs). Functionally, StEVs more potently promoted tumour cell proliferation and migration, while in vivo mouse models further demonstrated that StEVs enhanced tumour growth. Multi-omics analyses and pharmacological inhibition studies revealed that StEVs activate the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MAPK/ERK1/2) signalling pathway in recipient cells. These findings highlight the mechanobiological regulation of EV-mediated intercellular communication within 3D ECM environments and demonstrate how matrix stiffness shapes EV cargo and pro-tumour activity.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70165\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70165","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
3D Nanofibrillar Matrix Stiffness Modulates Extracellular Vesicle Cargo and Pro-Tumour Functions
Extracellular matrix (ECM) stiffness and extracellular vesicles (EVs) are critical regulators of tumour progression, yet their interaction in three-dimensional (3D) microenvironments remains poorly understood. Most studies on ECM stiffness and EV biology rely on 2D cultures, which do not capture the complexity of the tumour microenvironment. Here, a biomimetic 3D nanofibrillar ECM model based on a cellulose nanofibril hydrogel was established to assess stiffness-dependent changes in EV properties and functions. EVs derived from stiff matrices (StEVs) exhibited distinct physicochemical characteristics and carried unique protein and microRNA cargo compared with those from soft matrices (SoEVs). Functionally, StEVs more potently promoted tumour cell proliferation and migration, while in vivo mouse models further demonstrated that StEVs enhanced tumour growth. Multi-omics analyses and pharmacological inhibition studies revealed that StEVs activate the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MAPK/ERK1/2) signalling pathway in recipient cells. These findings highlight the mechanobiological regulation of EV-mediated intercellular communication within 3D ECM environments and demonstrate how matrix stiffness shapes EV cargo and pro-tumour activity.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.