同步荧光光谱法监测寨卡病毒样颗粒生产过程中的相关生化物质。

IF 3.1 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Vinícius Aragão Tejo Dias, Júlia Dezanetti da Silva, Júlia Públio Rabello, Fernanda Angela Correia Barrance, Milena Miyu Teruya, Marilda Keico Taciro, Ana Paula Jacobus, Jaci Leme, Thaissa Consoni Bernardino, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez
{"title":"同步荧光光谱法监测寨卡病毒样颗粒生产过程中的相关生化物质。","authors":"Vinícius Aragão Tejo Dias, Júlia Dezanetti da Silva, Júlia Públio Rabello, Fernanda Angela Correia Barrance, Milena Miyu Teruya, Marilda Keico Taciro, Ana Paula Jacobus, Jaci Leme, Thaissa Consoni Bernardino, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez","doi":"10.1007/s10895-025-04559-6","DOIUrl":null,"url":null,"abstract":"<p><p>This work evaluates using synchronous fluorescence spectroscopy with chemometric modeling techniques, Partial Least Squares (PLS), and Artificial Neural Network (ANN), to monitor key biochemical parameters during Zika virus-like particle (Zika-VLP) production. The study aimed to predict concentrations of lactate (Lac), glutamine (Gln), glutamate (Glu), ammonium (NH<sub>4</sub><sup>+</sup>), total protein (Tp), viable cell density (Xv), cell viability (Cv), and viral titer (VT) from offline synchronous fluorescence spectra at various wavelength differences (Δλ) captured throughout bioreactor assays. Biochemical parameters were initially monitored using standard methods. Both PLS and ANN models demonstrated good predictive capabilities for several parameters, with ANN generally outperforming PLS in accuracy and lower error rates. The study found that Δλ = 80 nm spectra, both processed and raw, yielded the best results, although the optimal preprocessing method varied by parameter. The model's predictive accuracy was assessed using Mean Relative Error (MRE) in percentage, showing promising results, especially for parameters like glutamate (1.1%), glutamine (1.6%), ammonium (4.0%), and viral titer (5.8%) when ANN was used as a modeling technique. Transmission electron microscopy confirmed the successful production of Zika-VLP, with sizes consistent with previous reports. Synchronous fluorescence spectroscopy, coupled with appropriate spectral preprocessing and chemometric modeling, is a viable technique for monitoring multiple parameters during Zika-VLP production.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronous Fluorescence Spectroscopy to Monitor Relevant Biochemicals over Zika-Virus-Like Particles' Production.\",\"authors\":\"Vinícius Aragão Tejo Dias, Júlia Dezanetti da Silva, Júlia Públio Rabello, Fernanda Angela Correia Barrance, Milena Miyu Teruya, Marilda Keico Taciro, Ana Paula Jacobus, Jaci Leme, Thaissa Consoni Bernardino, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez\",\"doi\":\"10.1007/s10895-025-04559-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work evaluates using synchronous fluorescence spectroscopy with chemometric modeling techniques, Partial Least Squares (PLS), and Artificial Neural Network (ANN), to monitor key biochemical parameters during Zika virus-like particle (Zika-VLP) production. The study aimed to predict concentrations of lactate (Lac), glutamine (Gln), glutamate (Glu), ammonium (NH<sub>4</sub><sup>+</sup>), total protein (Tp), viable cell density (Xv), cell viability (Cv), and viral titer (VT) from offline synchronous fluorescence spectra at various wavelength differences (Δλ) captured throughout bioreactor assays. Biochemical parameters were initially monitored using standard methods. Both PLS and ANN models demonstrated good predictive capabilities for several parameters, with ANN generally outperforming PLS in accuracy and lower error rates. The study found that Δλ = 80 nm spectra, both processed and raw, yielded the best results, although the optimal preprocessing method varied by parameter. The model's predictive accuracy was assessed using Mean Relative Error (MRE) in percentage, showing promising results, especially for parameters like glutamate (1.1%), glutamine (1.6%), ammonium (4.0%), and viral titer (5.8%) when ANN was used as a modeling technique. Transmission electron microscopy confirmed the successful production of Zika-VLP, with sizes consistent with previous reports. Synchronous fluorescence spectroscopy, coupled with appropriate spectral preprocessing and chemometric modeling, is a viable technique for monitoring multiple parameters during Zika-VLP production.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-025-04559-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04559-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作评估了同步荧光光谱与化学计量学建模技术、偏最小二乘法(PLS)和人工神经网络(ANN),以监测寨卡病毒样颗粒(Zika- vlp)生产过程中的关键生化参数。该研究旨在预测乳酸(Lac)、谷氨酰胺(Gln)、谷氨酸(Glu)、铵(NH4+)、总蛋白(Tp)、活细胞密度(Xv)、细胞活力(Cv)和病毒滴度(VT)的浓度,这些浓度来自于在整个生物反应器试验中捕获的不同波长差异的离线同步荧光光谱(Δλ)。最初使用标准方法监测生化参数。PLS和人工神经网络模型对几个参数都表现出良好的预测能力,人工神经网络在准确性和较低的错误率方面通常优于PLS。研究发现,尽管最佳预处理方法因参数而异,但处理和原始光谱Δλ = 80 nm均获得最佳结果。使用平均相对误差(MRE)百分比评估模型的预测准确性,显示出有希望的结果,特别是当使用人工神经网络作为建模技术时,谷氨酸(1.1%)、谷氨酰胺(1.6%)、铵(4.0%)和病毒滴度(5.8%)等参数。透射电子显微镜证实了寨卡- vlp的成功生产,其大小与以前的报道一致。同步荧光光谱,加上适当的光谱预处理和化学计量建模,是监测寨卡- vlp生产过程中多个参数的可行技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronous Fluorescence Spectroscopy to Monitor Relevant Biochemicals over Zika-Virus-Like Particles' Production.

This work evaluates using synchronous fluorescence spectroscopy with chemometric modeling techniques, Partial Least Squares (PLS), and Artificial Neural Network (ANN), to monitor key biochemical parameters during Zika virus-like particle (Zika-VLP) production. The study aimed to predict concentrations of lactate (Lac), glutamine (Gln), glutamate (Glu), ammonium (NH4+), total protein (Tp), viable cell density (Xv), cell viability (Cv), and viral titer (VT) from offline synchronous fluorescence spectra at various wavelength differences (Δλ) captured throughout bioreactor assays. Biochemical parameters were initially monitored using standard methods. Both PLS and ANN models demonstrated good predictive capabilities for several parameters, with ANN generally outperforming PLS in accuracy and lower error rates. The study found that Δλ = 80 nm spectra, both processed and raw, yielded the best results, although the optimal preprocessing method varied by parameter. The model's predictive accuracy was assessed using Mean Relative Error (MRE) in percentage, showing promising results, especially for parameters like glutamate (1.1%), glutamine (1.6%), ammonium (4.0%), and viral titer (5.8%) when ANN was used as a modeling technique. Transmission electron microscopy confirmed the successful production of Zika-VLP, with sizes consistent with previous reports. Synchronous fluorescence spectroscopy, coupled with appropriate spectral preprocessing and chemometric modeling, is a viable technique for monitoring multiple parameters during Zika-VLP production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信