使用3d打印随机分布散射体的反射光学相干弹性成像:培养皿中水凝胶的弹性映射。

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-12-01 Epub Date: 2025-10-07 DOI:10.1117/1.JBO.30.12.124507
Hao Xu, FanLei Yang, Ting Liang, Wen Zhang, JianQiang Mo, ZongPing Luo
{"title":"使用3d打印随机分布散射体的反射光学相干弹性成像:培养皿中水凝胶的弹性映射。","authors":"Hao Xu, FanLei Yang, Ting Liang, Wen Zhang, JianQiang Mo, ZongPing Luo","doi":"10.1117/1.JBO.30.12.124507","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Accurate estimation of hydrogel phantom elasticity in 3D cell culture systems provides valuable insights into cellular responses to various mechanical stimuli. Although reverberant wave elastography has been applied to measure hydrogel elasticity in 3D cell cultures using multi-point loading, achieving a high-quality reverberant displacement field remains critical for accurate reverberant wave elastography.</p><p><strong>Aim: </strong>We develop an innovative approach using 3D-printed randomly distributed scatterers to improve displacement field quality in reverberant wave elastography, inspired by scattering-coded architectured boundaries in object localization.</p><p><strong>Approach: </strong>Numerical simulations were performed to analyze the reverberant displacement fields under various loading conditions. The results were compared to determine the optimal loading configuration to enhance the reverberation level of the displacement field. Subsequently, both numerical and experimental reverberant wave elastography were carried out to validate the elasticity measurement with 3D-printed randomly distributed scatterers.</p><p><strong>Results: </strong>The comparison of reverberant displacement patterns under various loading conditions revealed that the displacement pattern under circular loading with 64 scatterers most closely approximated a diffuse wave field, exhibiting both spatial uniformity and directional isotropy. Numerical reverberant wave elastography was subsequently performed, successfully demonstrating its capability for elasticity measurements. Furthermore, the shear wave speeds obtained through optical coherence elastography showed good agreement with shear rheometry measurements.</p><p><strong>Conclusions: </strong>The developed 3D-printed randomly distributed scatterers successfully enhanced the quality of the reverberant displacement field for reverberant wave elastography. Our approach presents a novel and promising tool for quantifying tissue elasticity in reverberant wave elastography applications.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 12","pages":"124507"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503060/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reverberant optical coherence elastography using 3D-printed randomly distributed scatterers: elasticity mapping of hydrogels in culture dishes.\",\"authors\":\"Hao Xu, FanLei Yang, Ting Liang, Wen Zhang, JianQiang Mo, ZongPing Luo\",\"doi\":\"10.1117/1.JBO.30.12.124507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Accurate estimation of hydrogel phantom elasticity in 3D cell culture systems provides valuable insights into cellular responses to various mechanical stimuli. Although reverberant wave elastography has been applied to measure hydrogel elasticity in 3D cell cultures using multi-point loading, achieving a high-quality reverberant displacement field remains critical for accurate reverberant wave elastography.</p><p><strong>Aim: </strong>We develop an innovative approach using 3D-printed randomly distributed scatterers to improve displacement field quality in reverberant wave elastography, inspired by scattering-coded architectured boundaries in object localization.</p><p><strong>Approach: </strong>Numerical simulations were performed to analyze the reverberant displacement fields under various loading conditions. The results were compared to determine the optimal loading configuration to enhance the reverberation level of the displacement field. Subsequently, both numerical and experimental reverberant wave elastography were carried out to validate the elasticity measurement with 3D-printed randomly distributed scatterers.</p><p><strong>Results: </strong>The comparison of reverberant displacement patterns under various loading conditions revealed that the displacement pattern under circular loading with 64 scatterers most closely approximated a diffuse wave field, exhibiting both spatial uniformity and directional isotropy. Numerical reverberant wave elastography was subsequently performed, successfully demonstrating its capability for elasticity measurements. Furthermore, the shear wave speeds obtained through optical coherence elastography showed good agreement with shear rheometry measurements.</p><p><strong>Conclusions: </strong>The developed 3D-printed randomly distributed scatterers successfully enhanced the quality of the reverberant displacement field for reverberant wave elastography. Our approach presents a novel and promising tool for quantifying tissue elasticity in reverberant wave elastography applications.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 12\",\"pages\":\"124507\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503060/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.12.124507\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.12.124507","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:三维细胞培养系统中水凝胶幻模弹性的准确估计为细胞对各种机械刺激的反应提供了有价值的见解。虽然混响波弹性成像已经应用于多点加载的三维细胞培养中测量水凝胶弹性,但获得高质量的混响位移场仍然是精确的混响波弹性成像的关键。目的:我们开发了一种创新的方法,使用3d打印的随机分布散射体来改善反射波弹性成像中的位移场质量,灵感来自于物体定位中的散射编码架构边界。方法:采用数值模拟方法对不同载荷条件下的混响位移场进行分析。通过对结果的比较,确定了提高位移场混响水平的最佳加载配置。随后,分别进行了数值和实验混响波弹性分析,验证了3d打印随机分布散射体的弹性测量结果。结果:不同加载条件下的混响位移模式比较表明,64个散射体的圆形加载下的位移模式最接近于漫射波场,具有空间均匀性和方向各向同性。随后进行了数值混响波弹性成像,成功地证明了其弹性测量的能力。此外,通过光学相干弹性成像获得的剪切波速与剪切流变测量结果吻合良好。结论:所研制的3d打印随机分布散射体成功地提高了混响波弹性成像中混响位移场的质量。我们的方法提出了一种新的和有前途的工具来量化组织弹性在混响波弹性成像应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverberant optical coherence elastography using 3D-printed randomly distributed scatterers: elasticity mapping of hydrogels in culture dishes.

Significance: Accurate estimation of hydrogel phantom elasticity in 3D cell culture systems provides valuable insights into cellular responses to various mechanical stimuli. Although reverberant wave elastography has been applied to measure hydrogel elasticity in 3D cell cultures using multi-point loading, achieving a high-quality reverberant displacement field remains critical for accurate reverberant wave elastography.

Aim: We develop an innovative approach using 3D-printed randomly distributed scatterers to improve displacement field quality in reverberant wave elastography, inspired by scattering-coded architectured boundaries in object localization.

Approach: Numerical simulations were performed to analyze the reverberant displacement fields under various loading conditions. The results were compared to determine the optimal loading configuration to enhance the reverberation level of the displacement field. Subsequently, both numerical and experimental reverberant wave elastography were carried out to validate the elasticity measurement with 3D-printed randomly distributed scatterers.

Results: The comparison of reverberant displacement patterns under various loading conditions revealed that the displacement pattern under circular loading with 64 scatterers most closely approximated a diffuse wave field, exhibiting both spatial uniformity and directional isotropy. Numerical reverberant wave elastography was subsequently performed, successfully demonstrating its capability for elasticity measurements. Furthermore, the shear wave speeds obtained through optical coherence elastography showed good agreement with shear rheometry measurements.

Conclusions: The developed 3D-printed randomly distributed scatterers successfully enhanced the quality of the reverberant displacement field for reverberant wave elastography. Our approach presents a novel and promising tool for quantifying tissue elasticity in reverberant wave elastography applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信