铜绿假单胞菌LbcA•CtpA蛋白水解复合物及其底物的控制。

IF 3 3区 生物学 Q3 MICROBIOLOGY
Kévin J Rome, Andrew J Darwin
{"title":"铜绿假单胞菌LbcA•CtpA蛋白水解复合物及其底物的控制。","authors":"Kévin J Rome, Andrew J Darwin","doi":"10.1128/jb.00169-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> is a highly adaptable bacterial pathogen with a resilient cell envelope. This envelope must be elongated as cells grow, which requires coordinated biosynthesis of the inner and outer membranes and the peptidoglycan cell wall. Cell wall endopeptidases are essential to expand the peptidoglycan sacculus, and the LbcA•CtpA proteolytic complex controls the activity of multiple endopeptidases by degrading them. Here, we report an investigation into control of the LbcA•CtpA proteolytic complex and its substrates. LbcA and CtpA levels were unaffected by growth rate, which corresponded with constitutive expression of their genes. For CtpA, this was explained by its arrangement in a complex operon containing an internal <i>ctpA</i> promoter. Despite constitutive LbcA and CtpA production, the LbcA•CtpA substrate levels were higher when cells were growing rapidly. In most cases, this correlated with modestly higher substrate gene expression in the exponential phase. However, most of the control came from reduced CtpA activity when cells were growing rapidly. Our data suggest that CtpA activity might be affected by phospholipid transport and related processes in the cell envelope. A similar phenomenon was reported to affect the <i>Escherichia coli</i> NlpI•Prc complex, even though there are major sequence and structural differences between the NlpI•Prc and LbcA•CtpA complexes. This makes it likely that growth-rate-dependent autolysin control by these proteolytic complexes is widely conserved, even if they are composed of non-orthologous proteins in some cases.IMPORTANCECarboxyl-terminal processing proteases occur in all domains of life. Some are associated with bacterial virulence, including <i>P. aeruginosa</i> CtpA, which works with the outer membrane lipoprotein LbcA to degrade cell wall endopeptidases. We report that the LbcA•CtpA complex activity is coordinated with growth rate, ensuring appropriate levels of its substrates for cell wall expansion. The mechanism appears to be connected to phospholipid transport, much like a phenomenon reported for <i>Escherichia coli</i> NlpI•Prc complex. However, the NlpI•Prc and LbcA•CtpA complexes are not orthologs. Therefore, growth-rate-dependent control by analogous but dissimilar complexes might be a widely conserved mechanism, and one that could perhaps be targeted for therapeutic intervention.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0016925"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of the <i>Pseudomonas aeruginosa</i> LbcA•CtpA proteolytic complex and its substrates.\",\"authors\":\"Kévin J Rome, Andrew J Darwin\",\"doi\":\"10.1128/jb.00169-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Pseudomonas aeruginosa</i> is a highly adaptable bacterial pathogen with a resilient cell envelope. This envelope must be elongated as cells grow, which requires coordinated biosynthesis of the inner and outer membranes and the peptidoglycan cell wall. Cell wall endopeptidases are essential to expand the peptidoglycan sacculus, and the LbcA•CtpA proteolytic complex controls the activity of multiple endopeptidases by degrading them. Here, we report an investigation into control of the LbcA•CtpA proteolytic complex and its substrates. LbcA and CtpA levels were unaffected by growth rate, which corresponded with constitutive expression of their genes. For CtpA, this was explained by its arrangement in a complex operon containing an internal <i>ctpA</i> promoter. Despite constitutive LbcA and CtpA production, the LbcA•CtpA substrate levels were higher when cells were growing rapidly. In most cases, this correlated with modestly higher substrate gene expression in the exponential phase. However, most of the control came from reduced CtpA activity when cells were growing rapidly. Our data suggest that CtpA activity might be affected by phospholipid transport and related processes in the cell envelope. A similar phenomenon was reported to affect the <i>Escherichia coli</i> NlpI•Prc complex, even though there are major sequence and structural differences between the NlpI•Prc and LbcA•CtpA complexes. This makes it likely that growth-rate-dependent autolysin control by these proteolytic complexes is widely conserved, even if they are composed of non-orthologous proteins in some cases.IMPORTANCECarboxyl-terminal processing proteases occur in all domains of life. Some are associated with bacterial virulence, including <i>P. aeruginosa</i> CtpA, which works with the outer membrane lipoprotein LbcA to degrade cell wall endopeptidases. We report that the LbcA•CtpA complex activity is coordinated with growth rate, ensuring appropriate levels of its substrates for cell wall expansion. The mechanism appears to be connected to phospholipid transport, much like a phenomenon reported for <i>Escherichia coli</i> NlpI•Prc complex. However, the NlpI•Prc and LbcA•CtpA complexes are not orthologs. Therefore, growth-rate-dependent control by analogous but dissimilar complexes might be a widely conserved mechanism, and one that could perhaps be targeted for therapeutic intervention.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0016925\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00169-25\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00169-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铜绿假单胞菌是一种具有弹性细胞包膜的高适应性细菌病原体。当细胞生长时,这个包膜必须拉长,这需要内膜和外膜以及肽聚糖细胞壁的协调生物合成。细胞壁内肽酶是扩大肽聚糖小囊所必需的,而LbcA•CtpA蛋白水解复合物通过降解多种内肽酶来控制它们的活性。在这里,我们报告了对LbcA•CtpA蛋白水解复合物及其底物控制的研究。LbcA和CtpA水平不受生长速度的影响,这与其基因的组成表达相对应。对于CtpA,这可以通过其在一个包含内部CtpA启动子的复杂操纵子中的排列来解释。尽管组成型LbcA和CtpA产生,当细胞快速生长时,LbcA•CtpA底物水平较高。在大多数情况下,这与指数阶段适度较高的底物基因表达相关。然而,当细胞快速生长时,大部分控制来自CtpA活性的降低。我们的数据表明,CtpA活性可能受到磷脂转运和细胞包膜中的相关过程的影响。据报道,类似的现象也发生在大肠杆菌NlpI•Prc复合体上,尽管NlpI•Prc复合体和LbcA•CtpA复合体之间存在主要的序列和结构差异。这使得由这些蛋白水解复合物控制的生长速率依赖的自溶素很可能是广泛保守的,即使它们在某些情况下由非同源蛋白组成。羧基末端加工蛋白酶存在于生命的所有领域。有些与细菌毒力有关,包括铜绿假单胞菌CtpA,它与外膜脂蛋白LbcA一起降解细胞壁内多肽酶。我们报道LbcA•CtpA复合物活性与生长速率协调,确保其底物的适当水平用于细胞壁扩增。该机制似乎与磷脂转运有关,很像大肠杆菌NlpI•Prc复合体的现象。然而,NlpI•Prc和LbcA•CtpA复合物不是同源物。因此,通过类似但不同的复合物来控制生长速率可能是一种广泛保守的机制,并且可能成为治疗干预的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of the Pseudomonas aeruginosa LbcA•CtpA proteolytic complex and its substrates.

Pseudomonas aeruginosa is a highly adaptable bacterial pathogen with a resilient cell envelope. This envelope must be elongated as cells grow, which requires coordinated biosynthesis of the inner and outer membranes and the peptidoglycan cell wall. Cell wall endopeptidases are essential to expand the peptidoglycan sacculus, and the LbcA•CtpA proteolytic complex controls the activity of multiple endopeptidases by degrading them. Here, we report an investigation into control of the LbcA•CtpA proteolytic complex and its substrates. LbcA and CtpA levels were unaffected by growth rate, which corresponded with constitutive expression of their genes. For CtpA, this was explained by its arrangement in a complex operon containing an internal ctpA promoter. Despite constitutive LbcA and CtpA production, the LbcA•CtpA substrate levels were higher when cells were growing rapidly. In most cases, this correlated with modestly higher substrate gene expression in the exponential phase. However, most of the control came from reduced CtpA activity when cells were growing rapidly. Our data suggest that CtpA activity might be affected by phospholipid transport and related processes in the cell envelope. A similar phenomenon was reported to affect the Escherichia coli NlpI•Prc complex, even though there are major sequence and structural differences between the NlpI•Prc and LbcA•CtpA complexes. This makes it likely that growth-rate-dependent autolysin control by these proteolytic complexes is widely conserved, even if they are composed of non-orthologous proteins in some cases.IMPORTANCECarboxyl-terminal processing proteases occur in all domains of life. Some are associated with bacterial virulence, including P. aeruginosa CtpA, which works with the outer membrane lipoprotein LbcA to degrade cell wall endopeptidases. We report that the LbcA•CtpA complex activity is coordinated with growth rate, ensuring appropriate levels of its substrates for cell wall expansion. The mechanism appears to be connected to phospholipid transport, much like a phenomenon reported for Escherichia coli NlpI•Prc complex. However, the NlpI•Prc and LbcA•CtpA complexes are not orthologs. Therefore, growth-rate-dependent control by analogous but dissimilar complexes might be a widely conserved mechanism, and one that could perhaps be targeted for therapeutic intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信