细胞内谷氨酰胺随氮有效性波动并调节耻垢分枝杆菌生物膜的形成。

IF 3 3区 生物学 Q3 MICROBIOLOGY
Elizabeth Varner, Mitchell Meyer, Jocelyn Whalen, Yu-Hao Wang, Carlos Rodriguez, Ifra Malik, Steven J Mullet, Stacy L Gelhaus, William H DePas
{"title":"细胞内谷氨酰胺随氮有效性波动并调节耻垢分枝杆菌生物膜的形成。","authors":"Elizabeth Varner, Mitchell Meyer, Jocelyn Whalen, Yu-Hao Wang, Carlos Rodriguez, Ifra Malik, Steven J Mullet, Stacy L Gelhaus, William H DePas","doi":"10.1128/jb.00252-25","DOIUrl":null,"url":null,"abstract":"<p><p>Nontuberculous mycobacteria (NTM) can form biofilms during human infection and in household plumbing systems, so understanding biofilm regulation could help us better treat and prevent NTM infections. Glucose drives NTM aggregation <i>in vitro</i>, and ammonium inhibits it, but the regulatory systems controlling this early step in biofilm formation are not understood. Here, in the model NTM <i>Mycobacterium smegmatis</i>, we show that multiple carbon and nitrogen sources have similar impacts on aggregation as glucose and ammonium , suggesting that the response to these nutrients is general and likely sensed through downstream, integrated signals. Next, we performed a transposon screen in <i>M. smegmatis</i> to uncover these putative regulatory nodes. Our screen revealed that mutating specific genes in the purine and pyrimidine biosynthesis pathways caused an aggregation defect, but supplementing with adenosine and guanosine had no impact on aggregation either in a <i>purF</i> mutant or WT. Realizing that the only genes we hit in purine or pyrimidine biosynthesis were those that utilized glutamine as a nitrogen donor, we pivoted to the hypothesis that intracellular glutamine could be a nitrogen-responsive node affecting aggregation. We tested this hypothesis in a defined M63 medium using targeted mass spectrometry. Indeed, intracellular glutamine increased with nitrogen availability and correlated with planktonic growth. Furthermore, a <i>garA</i> mutant, which has an artificially expanded glutamine pool in the growth phase, grew solely as planktonic cells even without nitrogen supplementation. Altogether, these results establish that intracellular glutamine controls <i>M. smegmatis</i> aggregation, and they introduce flux-dependent sensors as key components of the NTM biofilm regulatory system.IMPORTANCEA subset of nontuberculous mycobacteria (NTM), including <i>Mycobacterium abscessus</i>, are opportunistic pathogens that can cause severe pulmonary infections. Biofilm formation renders <i>M. abscessus</i> more tolerant to antibiotics; hence, the ability to inhibit NTM biofilm formation could help us better prevent and treat NTM infections. However, the regulatory systems controlling NTM biofilm formation, which could include targets for anti-biofilm therapeutics, are poorly understood. The significance of this work is that it reveals intracellular glutamine as an important node controlling the initiation of biofilm formation in the model NTM <i>Mycobacterium smegmatis</i>. Building on this foundation, future studies will investigate how NTM biofilms can be dispersed by altering glutamine levels and will describe how NTM translates intracellular glutamine to the alteration of surface adhesins.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0025225"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intracellular glutamine fluctuates with nitrogen availability and regulates <i>Mycobacterium smegmatis</i> biofilm formation.\",\"authors\":\"Elizabeth Varner, Mitchell Meyer, Jocelyn Whalen, Yu-Hao Wang, Carlos Rodriguez, Ifra Malik, Steven J Mullet, Stacy L Gelhaus, William H DePas\",\"doi\":\"10.1128/jb.00252-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nontuberculous mycobacteria (NTM) can form biofilms during human infection and in household plumbing systems, so understanding biofilm regulation could help us better treat and prevent NTM infections. Glucose drives NTM aggregation <i>in vitro</i>, and ammonium inhibits it, but the regulatory systems controlling this early step in biofilm formation are not understood. Here, in the model NTM <i>Mycobacterium smegmatis</i>, we show that multiple carbon and nitrogen sources have similar impacts on aggregation as glucose and ammonium , suggesting that the response to these nutrients is general and likely sensed through downstream, integrated signals. Next, we performed a transposon screen in <i>M. smegmatis</i> to uncover these putative regulatory nodes. Our screen revealed that mutating specific genes in the purine and pyrimidine biosynthesis pathways caused an aggregation defect, but supplementing with adenosine and guanosine had no impact on aggregation either in a <i>purF</i> mutant or WT. Realizing that the only genes we hit in purine or pyrimidine biosynthesis were those that utilized glutamine as a nitrogen donor, we pivoted to the hypothesis that intracellular glutamine could be a nitrogen-responsive node affecting aggregation. We tested this hypothesis in a defined M63 medium using targeted mass spectrometry. Indeed, intracellular glutamine increased with nitrogen availability and correlated with planktonic growth. Furthermore, a <i>garA</i> mutant, which has an artificially expanded glutamine pool in the growth phase, grew solely as planktonic cells even without nitrogen supplementation. Altogether, these results establish that intracellular glutamine controls <i>M. smegmatis</i> aggregation, and they introduce flux-dependent sensors as key components of the NTM biofilm regulatory system.IMPORTANCEA subset of nontuberculous mycobacteria (NTM), including <i>Mycobacterium abscessus</i>, are opportunistic pathogens that can cause severe pulmonary infections. Biofilm formation renders <i>M. abscessus</i> more tolerant to antibiotics; hence, the ability to inhibit NTM biofilm formation could help us better prevent and treat NTM infections. However, the regulatory systems controlling NTM biofilm formation, which could include targets for anti-biofilm therapeutics, are poorly understood. The significance of this work is that it reveals intracellular glutamine as an important node controlling the initiation of biofilm formation in the model NTM <i>Mycobacterium smegmatis</i>. Building on this foundation, future studies will investigate how NTM biofilms can be dispersed by altering glutamine levels and will describe how NTM translates intracellular glutamine to the alteration of surface adhesins.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0025225\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00252-25\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00252-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非结核分枝杆菌(NTM)可以在人类感染和家庭管道系统中形成生物膜,因此了解生物膜调控可以帮助我们更好地治疗和预防NTM感染。葡萄糖在体外驱动NTM聚集,而铵则抑制它,但控制这一生物膜形成早期步骤的调控系统尚不清楚。在这里,在NTM耻垢分枝杆菌模型中,我们发现多种碳和氮源对聚集的影响与葡萄糖和铵类似,这表明对这些营养物质的反应是普遍的,可能通过下游的综合信号被感知。接下来,我们对耻垢分枝杆菌进行转座子筛选,以发现这些假定的调控节点。我们的筛选显示,突变嘌呤和嘧啶生物合成途径中的特定基因会导致聚集缺陷,但在purF突变体或WT中补充腺苷和鸟苷对聚集没有影响。意识到我们在嘌呤或嘧啶生物合成中唯一撞击的基因是那些利用谷氨酰胺作为氮供体的基因,我们转向了细胞内谷氨酰胺可能是影响聚集的氮响应节点的假设。我们在确定的M63介质中使用靶向质谱法验证了这一假设。事实上,细胞内谷氨酰胺随着氮的可用性而增加,并与浮游生物的生长相关。此外,在生长阶段人工扩大谷氨酰胺池的garA突变体即使不补充氮,也能以浮游细胞的形式生长。总之,这些结果确定细胞内谷氨酰胺控制耻垢分枝杆菌聚集,并引入通量依赖传感器作为NTM生物膜调节系统的关键组成部分。重要性非结核分枝杆菌(NTM)的一个子集,包括脓肿分枝杆菌,是可引起严重肺部感染的机会性病原体。生物膜的形成使脓肿分枝杆菌对抗生素更具耐受性;因此,抑制NTM生物膜形成的能力可以帮助我们更好地预防和治疗NTM感染。然而,控制NTM生物膜形成的调控系统,其中可能包括抗生物膜治疗的靶点,知之甚少。这项工作的意义在于它揭示了细胞内谷氨酰胺是控制NTM模型耻垢分枝杆菌生物膜形成起始的重要节点。在此基础上,未来的研究将探讨NTM生物膜如何通过改变谷氨酰胺水平来分散,并将描述NTM如何将细胞内谷氨酰胺转化为表面粘附素的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intracellular glutamine fluctuates with nitrogen availability and regulates Mycobacterium smegmatis biofilm formation.

Nontuberculous mycobacteria (NTM) can form biofilms during human infection and in household plumbing systems, so understanding biofilm regulation could help us better treat and prevent NTM infections. Glucose drives NTM aggregation in vitro, and ammonium inhibits it, but the regulatory systems controlling this early step in biofilm formation are not understood. Here, in the model NTM Mycobacterium smegmatis, we show that multiple carbon and nitrogen sources have similar impacts on aggregation as glucose and ammonium , suggesting that the response to these nutrients is general and likely sensed through downstream, integrated signals. Next, we performed a transposon screen in M. smegmatis to uncover these putative regulatory nodes. Our screen revealed that mutating specific genes in the purine and pyrimidine biosynthesis pathways caused an aggregation defect, but supplementing with adenosine and guanosine had no impact on aggregation either in a purF mutant or WT. Realizing that the only genes we hit in purine or pyrimidine biosynthesis were those that utilized glutamine as a nitrogen donor, we pivoted to the hypothesis that intracellular glutamine could be a nitrogen-responsive node affecting aggregation. We tested this hypothesis in a defined M63 medium using targeted mass spectrometry. Indeed, intracellular glutamine increased with nitrogen availability and correlated with planktonic growth. Furthermore, a garA mutant, which has an artificially expanded glutamine pool in the growth phase, grew solely as planktonic cells even without nitrogen supplementation. Altogether, these results establish that intracellular glutamine controls M. smegmatis aggregation, and they introduce flux-dependent sensors as key components of the NTM biofilm regulatory system.IMPORTANCEA subset of nontuberculous mycobacteria (NTM), including Mycobacterium abscessus, are opportunistic pathogens that can cause severe pulmonary infections. Biofilm formation renders M. abscessus more tolerant to antibiotics; hence, the ability to inhibit NTM biofilm formation could help us better prevent and treat NTM infections. However, the regulatory systems controlling NTM biofilm formation, which could include targets for anti-biofilm therapeutics, are poorly understood. The significance of this work is that it reveals intracellular glutamine as an important node controlling the initiation of biofilm formation in the model NTM Mycobacterium smegmatis. Building on this foundation, future studies will investigate how NTM biofilms can be dispersed by altering glutamine levels and will describe how NTM translates intracellular glutamine to the alteration of surface adhesins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信