Nikoo Soltan, Mats Y Svensson, Claire F Jones, Peter A Cripton, Gunter P Siegmund
{"title":"模拟鞭打暴露中头部运动学和颈脑脊液压力瞬变的相关性","authors":"Nikoo Soltan, Mats Y Svensson, Claire F Jones, Peter A Cripton, Gunter P Siegmund","doi":"10.1016/j.jbiomech.2025.112994","DOIUrl":null,"url":null,"abstract":"<p><p>The origin and mechanics of whiplash injury from motor vehicle collisions are poorly understood. Among the proposed injury mechanisms, the inertial loading of the head and neck during whiplash exposures is theorized to produce injurious cerebrospinal fluid pressure (CSFP) transients. To better understand the mechanics and modal behavior of CSFP transients during whiplash exposures, we quantified the time-frequency relationship between input head kinematics and cervical CSFP responses in an in vivo pig model. Wavelet coherence analysis was used to correlate seven head kinematic parameters (including temporal Neck Injury Criterion, NIC) with CSFP during simulated extension and flexion whiplash exposures. Overall, the first and last 50 ms of exposures, and frequency ranges between 30-65 Hz had larger coherences between head kinematics and CSFP, with higher coherences in extension exposures than flexion exposures. NIC did not universally outperform other head kinematic parameters as a correlate of CSFP. These findings highlight the complexity of the dynamics involved in generating CSFP transients in the cervical spine during whiplash exposures.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"193 ","pages":"112994"},"PeriodicalIF":2.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlating head kinematics and cervical cerebrospinal fluid pressure transients in simulated whiplash exposures.\",\"authors\":\"Nikoo Soltan, Mats Y Svensson, Claire F Jones, Peter A Cripton, Gunter P Siegmund\",\"doi\":\"10.1016/j.jbiomech.2025.112994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The origin and mechanics of whiplash injury from motor vehicle collisions are poorly understood. Among the proposed injury mechanisms, the inertial loading of the head and neck during whiplash exposures is theorized to produce injurious cerebrospinal fluid pressure (CSFP) transients. To better understand the mechanics and modal behavior of CSFP transients during whiplash exposures, we quantified the time-frequency relationship between input head kinematics and cervical CSFP responses in an in vivo pig model. Wavelet coherence analysis was used to correlate seven head kinematic parameters (including temporal Neck Injury Criterion, NIC) with CSFP during simulated extension and flexion whiplash exposures. Overall, the first and last 50 ms of exposures, and frequency ranges between 30-65 Hz had larger coherences between head kinematics and CSFP, with higher coherences in extension exposures than flexion exposures. NIC did not universally outperform other head kinematic parameters as a correlate of CSFP. These findings highlight the complexity of the dynamics involved in generating CSFP transients in the cervical spine during whiplash exposures.</p>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"193 \",\"pages\":\"112994\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiomech.2025.112994\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112994","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Correlating head kinematics and cervical cerebrospinal fluid pressure transients in simulated whiplash exposures.
The origin and mechanics of whiplash injury from motor vehicle collisions are poorly understood. Among the proposed injury mechanisms, the inertial loading of the head and neck during whiplash exposures is theorized to produce injurious cerebrospinal fluid pressure (CSFP) transients. To better understand the mechanics and modal behavior of CSFP transients during whiplash exposures, we quantified the time-frequency relationship between input head kinematics and cervical CSFP responses in an in vivo pig model. Wavelet coherence analysis was used to correlate seven head kinematic parameters (including temporal Neck Injury Criterion, NIC) with CSFP during simulated extension and flexion whiplash exposures. Overall, the first and last 50 ms of exposures, and frequency ranges between 30-65 Hz had larger coherences between head kinematics and CSFP, with higher coherences in extension exposures than flexion exposures. NIC did not universally outperform other head kinematic parameters as a correlate of CSFP. These findings highlight the complexity of the dynamics involved in generating CSFP transients in the cervical spine during whiplash exposures.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.