天冬酰胺连接糖基化蛋白1 (ALG1)通过调节n -连接糖基化和内质网应激促进肺腺癌细胞A549的侵袭性表型。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kanadit Piriyapairoje, Marta Baro, Aanchal Katoch, Bryce De Muth, Ludovica Villanti, Charupong Saengboonmee, Sopit Wongkham, Joseph N Contessa, Chatchai Phoomak
{"title":"天冬酰胺连接糖基化蛋白1 (ALG1)通过调节n -连接糖基化和内质网应激促进肺腺癌细胞A549的侵袭性表型。","authors":"Kanadit Piriyapairoje, Marta Baro, Aanchal Katoch, Bryce De Muth, Ludovica Villanti, Charupong Saengboonmee, Sopit Wongkham, Joseph N Contessa, Chatchai Phoomak","doi":"10.1007/s10719-025-10198-7","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation plays a critical role in various biological processes and is essential for cell survival. Aberrant glycosylation has been implicated in numerous diseases, including cancer. Lung cancer remains the leading cause of cancer-related mortality worldwide. The correlation between lung cancer progression and abnormal glycosylation has been demonstrated previously. Asparagine-linked glycosylation protein 1 (ALG1) is a key enzyme involved in the N-linked glycosylation process; however, its role in cancer progression remains unclear. In this study, we investigated the function of ALG1 in lung cancer progression. Analysis of the Cancer Genome Atlas (TCGA) dataset revealed that ALG1 expression was significantly upregulated in lung tumor tissues and was associated with poor patient prognosis. To explore its functional relevance, ALG1 expression was depleted in A549 lung adenocarcinoma cells using CRISPR-Cas9-mediated knockout. Loss of ALG1 led to reduced levels of protein N-linked glycosylation and induced an endoplasmic reticulum (ER)-stress response. Functionally, ALG1 knockout significantly impaired A549 cell proliferation, migration, and invasion, as evidenced by phenotypic assays and molecular markers. Moreover, the extent of glycosylation deficiency was positively correlated with ER-stress activation and inversely associated with cancer cell aggressiveness. These findings suggest that ALG1 promotes lung cancer aggressiveness through the regulation of protein glycosylation and modulation of ER-stress pathways. Overall, this study highlights the potential of ALG1 as a therapeutic target and a prognostic biomarker for lung adenocarcinoma patients.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asparagine-linked glycosylation protein 1 (ALG1) promotes aggressive phenotypes of lung adenocarcinoma cells, A549, via modulating N-linked glycosylation and ER-Stress.\",\"authors\":\"Kanadit Piriyapairoje, Marta Baro, Aanchal Katoch, Bryce De Muth, Ludovica Villanti, Charupong Saengboonmee, Sopit Wongkham, Joseph N Contessa, Chatchai Phoomak\",\"doi\":\"10.1007/s10719-025-10198-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosylation plays a critical role in various biological processes and is essential for cell survival. Aberrant glycosylation has been implicated in numerous diseases, including cancer. Lung cancer remains the leading cause of cancer-related mortality worldwide. The correlation between lung cancer progression and abnormal glycosylation has been demonstrated previously. Asparagine-linked glycosylation protein 1 (ALG1) is a key enzyme involved in the N-linked glycosylation process; however, its role in cancer progression remains unclear. In this study, we investigated the function of ALG1 in lung cancer progression. Analysis of the Cancer Genome Atlas (TCGA) dataset revealed that ALG1 expression was significantly upregulated in lung tumor tissues and was associated with poor patient prognosis. To explore its functional relevance, ALG1 expression was depleted in A549 lung adenocarcinoma cells using CRISPR-Cas9-mediated knockout. Loss of ALG1 led to reduced levels of protein N-linked glycosylation and induced an endoplasmic reticulum (ER)-stress response. Functionally, ALG1 knockout significantly impaired A549 cell proliferation, migration, and invasion, as evidenced by phenotypic assays and molecular markers. Moreover, the extent of glycosylation deficiency was positively correlated with ER-stress activation and inversely associated with cancer cell aggressiveness. These findings suggest that ALG1 promotes lung cancer aggressiveness through the regulation of protein glycosylation and modulation of ER-stress pathways. Overall, this study highlights the potential of ALG1 as a therapeutic target and a prognostic biomarker for lung adenocarcinoma patients.</p>\",\"PeriodicalId\":12762,\"journal\":{\"name\":\"Glycoconjugate Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycoconjugate Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10719-025-10198-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-025-10198-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖基化在多种生物过程中起着至关重要的作用,对细胞存活至关重要。异常糖基化与包括癌症在内的许多疾病有关。肺癌仍然是全球癌症相关死亡的主要原因。肺癌进展与异常糖基化之间的相关性先前已被证实。天冬酰胺连接糖基化蛋白1 (ALG1)是参与n -连接糖基化过程的关键酶;然而,它在癌症进展中的作用仍不清楚。在这项研究中,我们探讨了ALG1在肺癌进展中的作用。对癌症基因组图谱(TCGA)数据集的分析显示,ALG1在肺肿瘤组织中的表达显著上调,并与患者预后不良相关。为了探究其功能相关性,我们利用crispr - cas9介导的基因敲除技术,在A549肺腺癌细胞中减少了ALG1的表达。ALG1的缺失导致蛋白n -糖基化水平降低,并诱导内质网(ER)应激反应。表型分析和分子标记证明,在功能上,ALG1敲除显著损害了A549细胞的增殖、迁移和侵袭。此外,糖基化缺陷的程度与内质网应激激活呈正相关,与癌细胞侵袭性呈负相关。这些发现表明,ALG1通过调节蛋白糖基化和内质网应激途径促进肺癌侵袭性。总的来说,这项研究强调了ALG1作为肺腺癌患者的治疗靶点和预后生物标志物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asparagine-linked glycosylation protein 1 (ALG1) promotes aggressive phenotypes of lung adenocarcinoma cells, A549, via modulating N-linked glycosylation and ER-Stress.

Glycosylation plays a critical role in various biological processes and is essential for cell survival. Aberrant glycosylation has been implicated in numerous diseases, including cancer. Lung cancer remains the leading cause of cancer-related mortality worldwide. The correlation between lung cancer progression and abnormal glycosylation has been demonstrated previously. Asparagine-linked glycosylation protein 1 (ALG1) is a key enzyme involved in the N-linked glycosylation process; however, its role in cancer progression remains unclear. In this study, we investigated the function of ALG1 in lung cancer progression. Analysis of the Cancer Genome Atlas (TCGA) dataset revealed that ALG1 expression was significantly upregulated in lung tumor tissues and was associated with poor patient prognosis. To explore its functional relevance, ALG1 expression was depleted in A549 lung adenocarcinoma cells using CRISPR-Cas9-mediated knockout. Loss of ALG1 led to reduced levels of protein N-linked glycosylation and induced an endoplasmic reticulum (ER)-stress response. Functionally, ALG1 knockout significantly impaired A549 cell proliferation, migration, and invasion, as evidenced by phenotypic assays and molecular markers. Moreover, the extent of glycosylation deficiency was positively correlated with ER-stress activation and inversely associated with cancer cell aggressiveness. These findings suggest that ALG1 promotes lung cancer aggressiveness through the regulation of protein glycosylation and modulation of ER-stress pathways. Overall, this study highlights the potential of ALG1 as a therapeutic target and a prognostic biomarker for lung adenocarcinoma patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信