Rie Nakashima, Mai Inadomi, Hiroyuki Tsutsumi, Tomonori Ohata, Hirohito Ikeda
{"title":"瓜bbbbil与环丙沙星、左氧氟沙星、洛美沙星包合物形成的1H-NMR研究。","authors":"Rie Nakashima, Mai Inadomi, Hiroyuki Tsutsumi, Tomonori Ohata, Hirohito Ikeda","doi":"10.1248/cpb.c25-00362","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the recent detection of pharmaceutical residues in aquatic environments, the development of methods for their removal has attracted increasing research attention. Considering the rich host-guest chemistry of cucurbit[7]uril (CB[7]), which can form stable inclusion complexes with various compounds, we envisioned that CB[7] could be used for capturing pharmaceutical residues in aquatic environments. In this study, using <sup>1</sup>H-NMR spectroscopy, we examined the formation of inclusion complexes between CB[7] and new quinolone antibiotics that have been linked to the emergence of resistant bacteria, that is, ciprofloxacin hydrochloride monohydrate (CPFX), levofloxacin hydrochloride (LVFX), lomefloxacin hydrochloride (LFLX), and pazufloxacin mesylate (PZFX). The results showed that CPFX, LVFX, and LFLX formed inclusion complexes with CB[7] at a molar ratio of 1 : 1, with complex formation constants (K) of 0.529, 0.877, and 3.65 (×10<sup>4</sup> M<sup>-1</sup>), respectively, whereas PZFX did not. This difference was attributed to the presence or absence of a piperazine ring, indicating that it is a critical feature for the formation of inclusion complexes with CB[7]. In addition, the thermodynamic parameters calculated using van't Hoff plots revealed that LVFX and LFLX with a methyl group on the piperazine ring expel high-energy water from the cavity of CB[7] more efficiently, resulting in larger K values. Because the piperazine ring structure is commonly found in many drugs, CB[7] can be expected to capture other drugs apart from those evaluated in this study. Therefore, CB[7] is a promising candidate as a host molecule for use in drug removal in aquatic environments through host-guest chemistry.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 10","pages":"968-973"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<sup>1</sup>H-NMR Spectroscopy Study of the Formation of Inclusion Complexes between Cucurbit[7]uril and Ciprofloxacin, Levofloxacin, and Lomefloxacin.\",\"authors\":\"Rie Nakashima, Mai Inadomi, Hiroyuki Tsutsumi, Tomonori Ohata, Hirohito Ikeda\",\"doi\":\"10.1248/cpb.c25-00362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Owing to the recent detection of pharmaceutical residues in aquatic environments, the development of methods for their removal has attracted increasing research attention. Considering the rich host-guest chemistry of cucurbit[7]uril (CB[7]), which can form stable inclusion complexes with various compounds, we envisioned that CB[7] could be used for capturing pharmaceutical residues in aquatic environments. In this study, using <sup>1</sup>H-NMR spectroscopy, we examined the formation of inclusion complexes between CB[7] and new quinolone antibiotics that have been linked to the emergence of resistant bacteria, that is, ciprofloxacin hydrochloride monohydrate (CPFX), levofloxacin hydrochloride (LVFX), lomefloxacin hydrochloride (LFLX), and pazufloxacin mesylate (PZFX). The results showed that CPFX, LVFX, and LFLX formed inclusion complexes with CB[7] at a molar ratio of 1 : 1, with complex formation constants (K) of 0.529, 0.877, and 3.65 (×10<sup>4</sup> M<sup>-1</sup>), respectively, whereas PZFX did not. This difference was attributed to the presence or absence of a piperazine ring, indicating that it is a critical feature for the formation of inclusion complexes with CB[7]. In addition, the thermodynamic parameters calculated using van't Hoff plots revealed that LVFX and LFLX with a methyl group on the piperazine ring expel high-energy water from the cavity of CB[7] more efficiently, resulting in larger K values. Because the piperazine ring structure is commonly found in many drugs, CB[7] can be expected to capture other drugs apart from those evaluated in this study. Therefore, CB[7] is a promising candidate as a host molecule for use in drug removal in aquatic environments through host-guest chemistry.</p>\",\"PeriodicalId\":9773,\"journal\":{\"name\":\"Chemical & pharmaceutical bulletin\",\"volume\":\"73 10\",\"pages\":\"968-973\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/cpb.c25-00362\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c25-00362","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
1H-NMR Spectroscopy Study of the Formation of Inclusion Complexes between Cucurbit[7]uril and Ciprofloxacin, Levofloxacin, and Lomefloxacin.
Owing to the recent detection of pharmaceutical residues in aquatic environments, the development of methods for their removal has attracted increasing research attention. Considering the rich host-guest chemistry of cucurbit[7]uril (CB[7]), which can form stable inclusion complexes with various compounds, we envisioned that CB[7] could be used for capturing pharmaceutical residues in aquatic environments. In this study, using 1H-NMR spectroscopy, we examined the formation of inclusion complexes between CB[7] and new quinolone antibiotics that have been linked to the emergence of resistant bacteria, that is, ciprofloxacin hydrochloride monohydrate (CPFX), levofloxacin hydrochloride (LVFX), lomefloxacin hydrochloride (LFLX), and pazufloxacin mesylate (PZFX). The results showed that CPFX, LVFX, and LFLX formed inclusion complexes with CB[7] at a molar ratio of 1 : 1, with complex formation constants (K) of 0.529, 0.877, and 3.65 (×104 M-1), respectively, whereas PZFX did not. This difference was attributed to the presence or absence of a piperazine ring, indicating that it is a critical feature for the formation of inclusion complexes with CB[7]. In addition, the thermodynamic parameters calculated using van't Hoff plots revealed that LVFX and LFLX with a methyl group on the piperazine ring expel high-energy water from the cavity of CB[7] more efficiently, resulting in larger K values. Because the piperazine ring structure is commonly found in many drugs, CB[7] can be expected to capture other drugs apart from those evaluated in this study. Therefore, CB[7] is a promising candidate as a host molecule for use in drug removal in aquatic environments through host-guest chemistry.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.