基于λ-外切酶驱动的分裂g -四重杂交的DNA行走系统,用于敏感的microRNA定量。

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Huijing Li, Miaohua Ruan
{"title":"基于λ-外切酶驱动的分裂g -四重杂交的DNA行走系统,用于敏感的microRNA定量。","authors":"Huijing Li, Miaohua Ruan","doi":"10.1007/s10529-025-03661-w","DOIUrl":null,"url":null,"abstract":"<p><p>The precise measurement of microRNAs (miRNAs) is essential for diagnosing newborn pneumonia. This paper presents a simple, sensitive and accurate fluorescence-based technique for miRNA identification, utilizing a λ-exonuclease (λ-Exo)-driven DNA walker and split G-quadruplex (split-G4)-facilitated signal amplification. In this biosensor, target miRNA initiates the DNA walker by unfolding the Walker-probe, hence perpetually facilitating the reassembly of split-G4. The reformed intact G4 structure is distinctly identified by the commercially accessible fluorescent dye thioflavin T (ThT), facilitating highly sensitive, label-free miRNA identification. Additionally, the DNA walking process is motivated by the λ-Exo, which endows the biosensor with a greatly elevated signal amplification efficiency. This method demonstrates low background noise and good dependability owing to its reliance on split-G4-generated signals. Furthermore, the technique has been effectively utilized on clinical specimens, indicating its capability for disease diagnosis.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 5","pages":"122"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"λ-exonuclease-driven split G-quadruplex hybridization-based DNA walking system for sensitive microRNA quantification.\",\"authors\":\"Huijing Li, Miaohua Ruan\",\"doi\":\"10.1007/s10529-025-03661-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precise measurement of microRNAs (miRNAs) is essential for diagnosing newborn pneumonia. This paper presents a simple, sensitive and accurate fluorescence-based technique for miRNA identification, utilizing a λ-exonuclease (λ-Exo)-driven DNA walker and split G-quadruplex (split-G4)-facilitated signal amplification. In this biosensor, target miRNA initiates the DNA walker by unfolding the Walker-probe, hence perpetually facilitating the reassembly of split-G4. The reformed intact G4 structure is distinctly identified by the commercially accessible fluorescent dye thioflavin T (ThT), facilitating highly sensitive, label-free miRNA identification. Additionally, the DNA walking process is motivated by the λ-Exo, which endows the biosensor with a greatly elevated signal amplification efficiency. This method demonstrates low background noise and good dependability owing to its reliance on split-G4-generated signals. Furthermore, the technique has been effectively utilized on clinical specimens, indicating its capability for disease diagnosis.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 5\",\"pages\":\"122\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03661-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03661-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精确测量microrna (mirna)对于诊断新生儿肺炎至关重要。本文提出了一种简单、灵敏、准确的基于荧光的miRNA鉴定技术,利用λ-外切酶(λ-Exo)驱动的DNA助行器和分裂g -四重体(split- g4)促进的信号放大。在这种生物传感器中,目标miRNA通过展开walker -探针启动DNA walker,从而永久地促进split-G4的重组。重组后的完整G4结构可以被商业上可获得的荧光染料硫黄素T (ThT)清晰地识别,从而实现高灵敏度、无标记的miRNA鉴定。此外,DNA行走过程是由λ-Exo驱动的,这使得生物传感器的信号放大效率大大提高。该方法依赖于g4分裂产生的信号,具有低背景噪声和良好的可靠性。此外,该技术在临床标本上得到了有效的应用,表明了其疾病诊断的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
λ-exonuclease-driven split G-quadruplex hybridization-based DNA walking system for sensitive microRNA quantification.

The precise measurement of microRNAs (miRNAs) is essential for diagnosing newborn pneumonia. This paper presents a simple, sensitive and accurate fluorescence-based technique for miRNA identification, utilizing a λ-exonuclease (λ-Exo)-driven DNA walker and split G-quadruplex (split-G4)-facilitated signal amplification. In this biosensor, target miRNA initiates the DNA walker by unfolding the Walker-probe, hence perpetually facilitating the reassembly of split-G4. The reformed intact G4 structure is distinctly identified by the commercially accessible fluorescent dye thioflavin T (ThT), facilitating highly sensitive, label-free miRNA identification. Additionally, the DNA walking process is motivated by the λ-Exo, which endows the biosensor with a greatly elevated signal amplification efficiency. This method demonstrates low background noise and good dependability owing to its reliance on split-G4-generated signals. Furthermore, the technique has been effectively utilized on clinical specimens, indicating its capability for disease diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信