内部羞耻感的机器学习回归模型。

IF 2.7 4区 心理学 Q2 PSYCHOLOGY, EXPERIMENTAL
Nataša Kovač, Kruna Ratković, Hojjatollah Farahani, Peter Watson
{"title":"内部羞耻感的机器学习回归模型。","authors":"Nataša Kovač, Kruna Ratković, Hojjatollah Farahani, Peter Watson","doi":"10.1016/j.actpsy.2025.105721","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to predict Internal Shame (IS) based on childhood trauma, social emotional competence, cognitive flexibility, distress tolerance and alexithymia in an Iranian sample. The regression results suggested that distress tolerance was the most significant predictor, whereas cognitive flexibility had the least impact. We initially tested nine machine learning regression techniques (Multi-Layer Perceptron, AdaBoost, Support Vector Regression, Artificial Neural Network, Decision Tree, Random Forest, Gradient Boosting, Stochastic Gradient Boosting, and Extreme Gradient Boosting). Based on performance evaluation, we retained five models (Decision Tree, Random Forest, Gradient Boosting, Stochastic Gradient Boosting, and XGBoost) for detailed analysis of IS. The findings indicate that the XGBoost regression model was superior in performance compared to the other applied methods.</p>","PeriodicalId":7141,"journal":{"name":"Acta Psychologica","volume":"260 ","pages":"105721"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning regression models for internal shame.\",\"authors\":\"Nataša Kovač, Kruna Ratković, Hojjatollah Farahani, Peter Watson\",\"doi\":\"10.1016/j.actpsy.2025.105721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to predict Internal Shame (IS) based on childhood trauma, social emotional competence, cognitive flexibility, distress tolerance and alexithymia in an Iranian sample. The regression results suggested that distress tolerance was the most significant predictor, whereas cognitive flexibility had the least impact. We initially tested nine machine learning regression techniques (Multi-Layer Perceptron, AdaBoost, Support Vector Regression, Artificial Neural Network, Decision Tree, Random Forest, Gradient Boosting, Stochastic Gradient Boosting, and Extreme Gradient Boosting). Based on performance evaluation, we retained five models (Decision Tree, Random Forest, Gradient Boosting, Stochastic Gradient Boosting, and XGBoost) for detailed analysis of IS. The findings indicate that the XGBoost regression model was superior in performance compared to the other applied methods.</p>\",\"PeriodicalId\":7141,\"journal\":{\"name\":\"Acta Psychologica\",\"volume\":\"260 \",\"pages\":\"105721\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Psychologica\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actpsy.2025.105721\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Psychologica","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.actpsy.2025.105721","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在预测伊朗人童年创伤、社会情绪能力、认知灵活性、痛苦耐受性和述情障碍的内在羞耻(IS)。回归结果表明,痛苦承受能力是最显著的预测因子,而认知灵活性的影响最小。我们最初测试了九种机器学习回归技术(多层感知器、AdaBoost、支持向量回归、人工神经网络、决策树、随机森林、梯度增强、随机梯度增强和极端梯度增强)。基于性能评估,我们保留了五个模型(决策树、随机森林、梯度增强、随机梯度增强和XGBoost)来详细分析IS。研究结果表明,与其他应用方法相比,XGBoost回归模型在性能上具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning regression models for internal shame.

This study aims to predict Internal Shame (IS) based on childhood trauma, social emotional competence, cognitive flexibility, distress tolerance and alexithymia in an Iranian sample. The regression results suggested that distress tolerance was the most significant predictor, whereas cognitive flexibility had the least impact. We initially tested nine machine learning regression techniques (Multi-Layer Perceptron, AdaBoost, Support Vector Regression, Artificial Neural Network, Decision Tree, Random Forest, Gradient Boosting, Stochastic Gradient Boosting, and Extreme Gradient Boosting). Based on performance evaluation, we retained five models (Decision Tree, Random Forest, Gradient Boosting, Stochastic Gradient Boosting, and XGBoost) for detailed analysis of IS. The findings indicate that the XGBoost regression model was superior in performance compared to the other applied methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Psychologica
Acta Psychologica PSYCHOLOGY, EXPERIMENTAL-
CiteScore
3.00
自引率
5.60%
发文量
274
审稿时长
36 weeks
期刊介绍: Acta Psychologica publishes original articles and extended reviews on selected books in any area of experimental psychology. The focus of the Journal is on empirical studies and evaluative review articles that increase the theoretical understanding of human capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信