一种新型共沉淀法制备高性能Ni/MgO二氧化碳甲烷化催化剂。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-09 DOI:10.1002/cssc.202502052
Anna Wolf, Michael Chumakovski, Hauke Rohr, Patrik Hauberg, Morteza Saedi, Sebastian Mangelsen, Malte Behrens
{"title":"一种新型共沉淀法制备高性能Ni/MgO二氧化碳甲烷化催化剂。","authors":"Anna Wolf, Michael Chumakovski, Hauke Rohr, Patrik Hauberg, Morteza Saedi, Sebastian Mangelsen, Malte Behrens","doi":"10.1002/cssc.202502052","DOIUrl":null,"url":null,"abstract":"<p><p>The novel crystalline bimetallic single-source precursor (Ni<sub>1-x</sub>Mg<sub>x</sub>)<sub>12</sub>(CO<sub>3</sub>)<sub>8</sub>(OH)<sub>6</sub>O · y H<sub>2</sub>O with x = 0-0.5 can be converted into a highly active Ni/MgO CO<sub>2</sub> methanation catalyst. All stages of preparation, namely, coprecipitation, crystallization, calcination, and reduction, as well as the spent catalysts have been comprehensively analyzed using powder X-ray diffraction, physisorption, transmission electron microscopy, and other techniques. The scalable synthesis allows attaining unusually high surface areas around 230 m<sup>2</sup> g<sup>-1</sup> for the calcined precatalyst Ni<sub>1-x</sub>Mg<sub>x</sub>O. During reduction, this oxide solid solution separates into metallic Ni and Ni-depleted oxide to form the active catalyst with finely interdispersed nanoparticles of both components with a high porosity. A high methane production rate is observed in a CO<sub>2</sub>/H<sub>2</sub> (1:4) feed at high space velocities of ≈150 Lh<sup>-1</sup> g<sup>-1</sup>. This performance is competitive with an industrial methanation catalyst and depends strongly on the Ni:Mg ratio utilized in the synthesis. For an equimolar ratio, the new catalyst is found to be 4 times as active as the benchmark. Due to the nanoscaled microstructure, the novel material can stabilize very high Ni loadings (≤77 wt%) with only minor sintering effects at a reaction temperature of 240-280 °C. This material thus closes the gap between thermally unstable Raney-type and conventional lower loaded impregnated industrial catalysts.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202502052"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Coprecipitation Path to a High-Performing Ni/MgO Catalyst for Carbon Dioxide Methanation.\",\"authors\":\"Anna Wolf, Michael Chumakovski, Hauke Rohr, Patrik Hauberg, Morteza Saedi, Sebastian Mangelsen, Malte Behrens\",\"doi\":\"10.1002/cssc.202502052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The novel crystalline bimetallic single-source precursor (Ni<sub>1-x</sub>Mg<sub>x</sub>)<sub>12</sub>(CO<sub>3</sub>)<sub>8</sub>(OH)<sub>6</sub>O · y H<sub>2</sub>O with x = 0-0.5 can be converted into a highly active Ni/MgO CO<sub>2</sub> methanation catalyst. All stages of preparation, namely, coprecipitation, crystallization, calcination, and reduction, as well as the spent catalysts have been comprehensively analyzed using powder X-ray diffraction, physisorption, transmission electron microscopy, and other techniques. The scalable synthesis allows attaining unusually high surface areas around 230 m<sup>2</sup> g<sup>-1</sup> for the calcined precatalyst Ni<sub>1-x</sub>Mg<sub>x</sub>O. During reduction, this oxide solid solution separates into metallic Ni and Ni-depleted oxide to form the active catalyst with finely interdispersed nanoparticles of both components with a high porosity. A high methane production rate is observed in a CO<sub>2</sub>/H<sub>2</sub> (1:4) feed at high space velocities of ≈150 Lh<sup>-1</sup> g<sup>-1</sup>. This performance is competitive with an industrial methanation catalyst and depends strongly on the Ni:Mg ratio utilized in the synthesis. For an equimolar ratio, the new catalyst is found to be 4 times as active as the benchmark. Due to the nanoscaled microstructure, the novel material can stabilize very high Ni loadings (≤77 wt%) with only minor sintering effects at a reaction temperature of 240-280 °C. This material thus closes the gap between thermally unstable Raney-type and conventional lower loaded impregnated industrial catalysts.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202502052\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202502052\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202502052","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该新型晶体双金属单源前驱体(Ni1-xMgx)12(CO3)8(OH) 60·y H2O, x = 0-0.5,可转化为高活性Ni/MgO CO2甲烷化催化剂。采用粉末x射线衍射、物理吸附、透射电镜等技术对共沉淀、结晶、煅烧、还原等各制备阶段以及废催化剂进行了全面分析。可扩展的合成方法使得煅烧的预催化剂Ni1-xMgxO获得了大约230 m2 g-1的高表面积。在还原过程中,该氧化物固溶体分离成金属镍和贫镍氧化物,形成活性催化剂,两组分的纳米颗粒精细地相互分散,具有高孔隙率。在约150 lb -1 g-1的高空速下,在CO2/H2(1:4)进料中观察到较高的甲烷产率。这种性能与工业甲烷化催化剂具有竞争力,并且在很大程度上取决于合成中使用的Ni:Mg比。对于等摩尔比,新催化剂的活性是基准催化剂的4倍。由于纳米级的微观结构,这种新材料可以在240-280℃的反应温度下稳定非常高的Ni负载(≤77 wt%),只有轻微的烧结效应。因此,这种材料缩小了热不稳定的兰尼型和传统的低负荷浸渍工业催化剂之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Coprecipitation Path to a High-Performing Ni/MgO Catalyst for Carbon Dioxide Methanation.

The novel crystalline bimetallic single-source precursor (Ni1-xMgx)12(CO3)8(OH)6O · y H2O with x = 0-0.5 can be converted into a highly active Ni/MgO CO2 methanation catalyst. All stages of preparation, namely, coprecipitation, crystallization, calcination, and reduction, as well as the spent catalysts have been comprehensively analyzed using powder X-ray diffraction, physisorption, transmission electron microscopy, and other techniques. The scalable synthesis allows attaining unusually high surface areas around 230 m2 g-1 for the calcined precatalyst Ni1-xMgxO. During reduction, this oxide solid solution separates into metallic Ni and Ni-depleted oxide to form the active catalyst with finely interdispersed nanoparticles of both components with a high porosity. A high methane production rate is observed in a CO2/H2 (1:4) feed at high space velocities of ≈150 Lh-1 g-1. This performance is competitive with an industrial methanation catalyst and depends strongly on the Ni:Mg ratio utilized in the synthesis. For an equimolar ratio, the new catalyst is found to be 4 times as active as the benchmark. Due to the nanoscaled microstructure, the novel material can stabilize very high Ni loadings (≤77 wt%) with only minor sintering effects at a reaction temperature of 240-280 °C. This material thus closes the gap between thermally unstable Raney-type and conventional lower loaded impregnated industrial catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信