用于高性能柔性锂金属电池的光催化填料工程固体聚合物电解质。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-08 DOI:10.1002/cssc.202501717
Rong-Hao Wang, Liang Yue, Jun-Hao Liu, Li-Feng Chen
{"title":"用于高性能柔性锂金属电池的光催化填料工程固体聚合物电解质。","authors":"Rong-Hao Wang, Liang Yue, Jun-Hao Liu, Li-Feng Chen","doi":"10.1002/cssc.202501717","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible all-solid-state energy storage devices, with their exceptional energy density and safety, have emerged as promising candidates for next-generation portable electronics. However, the development of solid polymer electrolytes (SPEs) that simultaneously achieve high ionic conductivity, mechanical resilience, and interfacial stability remains a significant challenge. Although incorporating functionalized inorganic fillers into polymer matrices has shown partial success in enhancing ion transport, the intrinsic limitations of traditional fillers-low room-temperature ionic conductivity-hinder their further application. To address this, a novel strategy inspired by photocatalytic design principles is proposed, which involves engineering photocatalytic active fillers to generate strong and stable photogenerated electric fields. These fields modulate interfacial charge distribution, promote segmental motion of polymer chains, and facilitate lithium (Li) salt dissociation, while simultaneously optimizing the Li<sup>+</sup> solvation structure and coordination environment. Importantly, this approach significantly minimizes anion recombination, effectively suppressing space charge layer formation and reducing Li<sup>+</sup> concentration gradients. This innovative concept provides a new approach for developing high-performance flexible lithium metal batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501717"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic-Filler-Engineered Solid Polymer Electrolytes for High-Performance Flexible Lithium-Metal Batteries.\",\"authors\":\"Rong-Hao Wang, Liang Yue, Jun-Hao Liu, Li-Feng Chen\",\"doi\":\"10.1002/cssc.202501717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flexible all-solid-state energy storage devices, with their exceptional energy density and safety, have emerged as promising candidates for next-generation portable electronics. However, the development of solid polymer electrolytes (SPEs) that simultaneously achieve high ionic conductivity, mechanical resilience, and interfacial stability remains a significant challenge. Although incorporating functionalized inorganic fillers into polymer matrices has shown partial success in enhancing ion transport, the intrinsic limitations of traditional fillers-low room-temperature ionic conductivity-hinder their further application. To address this, a novel strategy inspired by photocatalytic design principles is proposed, which involves engineering photocatalytic active fillers to generate strong and stable photogenerated electric fields. These fields modulate interfacial charge distribution, promote segmental motion of polymer chains, and facilitate lithium (Li) salt dissociation, while simultaneously optimizing the Li<sup>+</sup> solvation structure and coordination environment. Importantly, this approach significantly minimizes anion recombination, effectively suppressing space charge layer formation and reducing Li<sup>+</sup> concentration gradients. This innovative concept provides a new approach for developing high-performance flexible lithium metal batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501717\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501717\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501717","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

灵活的全固态储能设备,以其卓越的能量密度和安全性,已成为下一代便携式电子产品的有希望的候选者。然而,同时实现高离子电导率、机械回弹性和界面稳定性的固体聚合物电解质(spe)的开发仍然是一个重大挑战。虽然在聚合物基体中加入功能化无机填料在增强离子传输方面已经取得了部分成功,但传统填料的固有局限性——低室温离子电导率——阻碍了它们的进一步应用。为了解决这个问题,提出了一种受光催化设计原理启发的新策略,该策略涉及工程光催化活性填料,以产生强而稳定的光产生电场。这些场调节了界面电荷分布,促进了聚合物链的节段运动,促进了锂盐的解离,同时优化了Li+溶剂化结构和配位环境。重要的是,这种方法显著地减少了阴离子重组,有效地抑制了空间电荷层的形成,降低了Li+浓度梯度。这一创新概念为开发高性能柔性锂金属电池提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photocatalytic-Filler-Engineered Solid Polymer Electrolytes for High-Performance Flexible Lithium-Metal Batteries.

Flexible all-solid-state energy storage devices, with their exceptional energy density and safety, have emerged as promising candidates for next-generation portable electronics. However, the development of solid polymer electrolytes (SPEs) that simultaneously achieve high ionic conductivity, mechanical resilience, and interfacial stability remains a significant challenge. Although incorporating functionalized inorganic fillers into polymer matrices has shown partial success in enhancing ion transport, the intrinsic limitations of traditional fillers-low room-temperature ionic conductivity-hinder their further application. To address this, a novel strategy inspired by photocatalytic design principles is proposed, which involves engineering photocatalytic active fillers to generate strong and stable photogenerated electric fields. These fields modulate interfacial charge distribution, promote segmental motion of polymer chains, and facilitate lithium (Li) salt dissociation, while simultaneously optimizing the Li+ solvation structure and coordination environment. Importantly, this approach significantly minimizes anion recombination, effectively suppressing space charge layer formation and reducing Li+ concentration gradients. This innovative concept provides a new approach for developing high-performance flexible lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信