Jeongin Ha, Hyeon Seok Kim, Hyunjung Kim, Yikyeom Kim, Surya Ayuati Ning Asih, Jae W Lee
{"title":"通过a -位掺杂调节LaFeO3中氧转移用于抗焦化化学环蒸汽甲烷重整。","authors":"Jeongin Ha, Hyeon Seok Kim, Hyunjung Kim, Yikyeom Kim, Surya Ayuati Ning Asih, Jae W Lee","doi":"10.1002/cssc.202501667","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical looping steam methane reforming (CL-SMR) is a promising technology for the simultaneous production of high-purity hydrogen and syngas without the need for external gas separation units. This study evaluates a series of A-site doped perovskite-type oxygen carriers, La<sub>0.8</sub>A<sub>0.2</sub>FeO<sub>3</sub> (A = Ca, Sr, Ba), to investigate the influence of alkaline earth metal doping on redox behavior and catalytic performance in CL-SMR. Substituting divalent cations at the A-site effectively promotes oxygen vacancy formation and enhances lattice oxygen transfer. Among the evaluated oxygen carriers, Sr-doped LaFeO<sub>3</sub> (La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub>) exhibits the most favorable performance. This is attributed to the optimal concentration of oxygen vacancies, which improved oxygen transfer, as confirmed by X-ray photoelectron spectroscopy, cerimetric titration, and O<sub>2</sub>-temperature programmed desorption. While undoped LaFeO<sub>3</sub> (LF) exhibits the highest methane activation, its limited oxygen mobility leads to severe coke formation. Enhanced oxygen transfer in La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub> effectively suppresses carbon deposition, while it shows the highest CO and hydrogen production. It achieves consistently high CO and H<sub>2</sub> yields (6.22-6.51 and 6.48-6.69 mmol/g<sub>cat</sub>, respectively) and demonstrates excellent stability over 50 redox cycles.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501667"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Oxygen Transfer via A-Site Doping in LaFeO<sub>3</sub> for Coke-Resistant Chemical Looping Steam Methane Reforming.\",\"authors\":\"Jeongin Ha, Hyeon Seok Kim, Hyunjung Kim, Yikyeom Kim, Surya Ayuati Ning Asih, Jae W Lee\",\"doi\":\"10.1002/cssc.202501667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical looping steam methane reforming (CL-SMR) is a promising technology for the simultaneous production of high-purity hydrogen and syngas without the need for external gas separation units. This study evaluates a series of A-site doped perovskite-type oxygen carriers, La<sub>0.8</sub>A<sub>0.2</sub>FeO<sub>3</sub> (A = Ca, Sr, Ba), to investigate the influence of alkaline earth metal doping on redox behavior and catalytic performance in CL-SMR. Substituting divalent cations at the A-site effectively promotes oxygen vacancy formation and enhances lattice oxygen transfer. Among the evaluated oxygen carriers, Sr-doped LaFeO<sub>3</sub> (La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub>) exhibits the most favorable performance. This is attributed to the optimal concentration of oxygen vacancies, which improved oxygen transfer, as confirmed by X-ray photoelectron spectroscopy, cerimetric titration, and O<sub>2</sub>-temperature programmed desorption. While undoped LaFeO<sub>3</sub> (LF) exhibits the highest methane activation, its limited oxygen mobility leads to severe coke formation. Enhanced oxygen transfer in La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub> effectively suppresses carbon deposition, while it shows the highest CO and hydrogen production. It achieves consistently high CO and H<sub>2</sub> yields (6.22-6.51 and 6.48-6.69 mmol/g<sub>cat</sub>, respectively) and demonstrates excellent stability over 50 redox cycles.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501667\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501667\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501667","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
化学循环蒸汽甲烷重整(CL-SMR)是一种很有前途的技术,可以在不需要外部气体分离装置的情况下同时生产高纯氢气和合成气。本研究评价了一系列a位掺杂钙钛矿型氧载体La0.8A0.2FeO3 (a = Ca, Sr, Ba),以研究碱土金属掺杂对CL-SMR中氧化还原行为和催化性能的影响。在a位取代二价阳离子能有效促进氧空位的形成,增强晶格氧转移。在评价的氧载体中,掺sr的LaFeO3 (La0.8Sr0.2FeO3)表现出最好的性能。x射线光电子能谱、铈滴定和o2温度程序解吸证实,这是由于氧空位的最佳浓度改善了氧转移。虽然未掺杂的LaFeO3 (LF)表现出最高的甲烷活性,但其有限的氧迁移率导致严重的焦炭形成。La0.8Sr0.2FeO3中氧转移的增强有效抑制了碳沉积,同时CO和氢气产量最高。它可以获得持续的高CO和H2产率(分别为6.22-6.51和6.48-6.69 mmol/gcat),并且在50个氧化还原循环中表现出优异的稳定性。
Modulating Oxygen Transfer via A-Site Doping in LaFeO3 for Coke-Resistant Chemical Looping Steam Methane Reforming.
Chemical looping steam methane reforming (CL-SMR) is a promising technology for the simultaneous production of high-purity hydrogen and syngas without the need for external gas separation units. This study evaluates a series of A-site doped perovskite-type oxygen carriers, La0.8A0.2FeO3 (A = Ca, Sr, Ba), to investigate the influence of alkaline earth metal doping on redox behavior and catalytic performance in CL-SMR. Substituting divalent cations at the A-site effectively promotes oxygen vacancy formation and enhances lattice oxygen transfer. Among the evaluated oxygen carriers, Sr-doped LaFeO3 (La0.8Sr0.2FeO3) exhibits the most favorable performance. This is attributed to the optimal concentration of oxygen vacancies, which improved oxygen transfer, as confirmed by X-ray photoelectron spectroscopy, cerimetric titration, and O2-temperature programmed desorption. While undoped LaFeO3 (LF) exhibits the highest methane activation, its limited oxygen mobility leads to severe coke formation. Enhanced oxygen transfer in La0.8Sr0.2FeO3 effectively suppresses carbon deposition, while it shows the highest CO and hydrogen production. It achieves consistently high CO and H2 yields (6.22-6.51 and 6.48-6.69 mmol/gcat, respectively) and demonstrates excellent stability over 50 redox cycles.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology