范德华堆叠异质结太阳能电池和光催化器件中多层铁电半导体准直接带边的探索。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Anna Milatul Ummah, Yen-Chang Su, Yu-Hung Peng, You-Xun Xu, Ching-Hwa Ho
{"title":"范德华堆叠异质结太阳能电池和光催化器件中多层铁电半导体准直接带边的探索。","authors":"Anna Milatul Ummah, Yen-Chang Su, Yu-Hung Peng, You-Xun Xu, Ching-Hwa Ho","doi":"10.1002/advs.202514717","DOIUrl":null,"url":null,"abstract":"<p><p>AgBiP<sub>2</sub>Se<sub>6</sub> is a ferroelectric semiconductor with a Curie temperature above 300 K which also possesses a variety of functional capabilities. In this work, it is demonstrated that despite its intrinsically indirect bandgap, multilayer (ML) AgBiP<sub>2</sub>Se<sub>6</sub> exhibits unexpectedly strong photoluminescence, attributed to its quasi-direct band structure. The energy difference between the indirect and direct transitions is relatively small (≈0.075 eV), as confirmed by both theoretical calculations and experimental observations. Temperature-dependent optical measurements, corroborated by electronic band structure analysis, reveal the coexistence of indirect ( <math> <semantics><msubsup><mi>E</mi> <mn>1</mn> <mi>ind</mi></msubsup> <annotation>${\\mathrm{E}}_{\\mathrm{1}}^{{\\mathrm{ind}}}$</annotation></semantics> </math> ) and direct ( <math> <semantics><msubsup><mi>E</mi> <mn>2</mn> <mi>d</mi></msubsup> <annotation>${\\mathrm{E}}_{\\mathrm{2}}^{\\mathrm{d}}$</annotation></semantics> </math> ) bandgaps, with phonon-assisted processes playing a significant role in the material's optoelectronic behaviors. The <math> <semantics><msubsup><mi>E</mi> <mn>1</mn> <mi>ind</mi></msubsup> <annotation>${\\mathrm{E}}_{\\mathrm{1}}^{{\\mathrm{ind}}}$</annotation></semantics> </math> and <math> <semantics><msubsup><mi>E</mi> <mn>2</mn> <mi>d</mi></msubsup> <annotation>${\\mathrm{E}}_{\\mathrm{2}}^{\\mathrm{d}}$</annotation></semantics> </math> transitions at 300 K are determined to be 1.46 and 1.535 eV, respectively. The indirect transition <math> <semantics><msubsup><mi>E</mi> <mn>1</mn> <mi>ind</mi></msubsup> <annotation>${\\mathrm{E}}_{\\mathrm{1}}^{{\\mathrm{ind}}}$</annotation></semantics> </math> is confirmed by transmittance (T) measurement, while the direct transition <math> <semantics><msubsup><mi>E</mi> <mn>2</mn> <mi>d</mi></msubsup> <annotation>${\\mathrm{E}}_{\\mathrm{2}}^{\\mathrm{d}}$</annotation></semantics> </math> is simultaneously detected through micro-photoluminescence (µPL) and micro-thermoreflectance (µTR) measurements. A stacked p-Ga<sub>0.5</sub>In<sub>0.5</sub>Se/n-AgBiP<sub>2</sub>Se<sub>6</sub> heterojunction solar cell is successfully fabricated, achieving a photoelectric conversion efficiency (PCE) up to ≈0.583%. Furthermore, AgBiP<sub>2</sub>Se<sub>6</sub> is demonstrated as a promising photocatalyst, exhibiting a high degradation efficiency to organic dyes. ML-AgBiP<sub>2</sub>Se<sub>6</sub> exhibits a quasi-direct bandgap and ferroelectric behavior at room temperature, making it a strong candidate for next-generation electronic, optoelectronic, and environment-protection functions.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e14717"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of Quasi-Direct Band Edge in a Multilayer Ferroelectric Semiconductor for Applications in Van Der Waals Stacked Heterojunction Solar Cell and Photocatalytic Devices.\",\"authors\":\"Anna Milatul Ummah, Yen-Chang Su, Yu-Hung Peng, You-Xun Xu, Ching-Hwa Ho\",\"doi\":\"10.1002/advs.202514717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AgBiP<sub>2</sub>Se<sub>6</sub> is a ferroelectric semiconductor with a Curie temperature above 300 K which also possesses a variety of functional capabilities. In this work, it is demonstrated that despite its intrinsically indirect bandgap, multilayer (ML) AgBiP<sub>2</sub>Se<sub>6</sub> exhibits unexpectedly strong photoluminescence, attributed to its quasi-direct band structure. The energy difference between the indirect and direct transitions is relatively small (≈0.075 eV), as confirmed by both theoretical calculations and experimental observations. Temperature-dependent optical measurements, corroborated by electronic band structure analysis, reveal the coexistence of indirect ( <math> <semantics><msubsup><mi>E</mi> <mn>1</mn> <mi>ind</mi></msubsup> <annotation>${\\\\mathrm{E}}_{\\\\mathrm{1}}^{{\\\\mathrm{ind}}}$</annotation></semantics> </math> ) and direct ( <math> <semantics><msubsup><mi>E</mi> <mn>2</mn> <mi>d</mi></msubsup> <annotation>${\\\\mathrm{E}}_{\\\\mathrm{2}}^{\\\\mathrm{d}}$</annotation></semantics> </math> ) bandgaps, with phonon-assisted processes playing a significant role in the material's optoelectronic behaviors. The <math> <semantics><msubsup><mi>E</mi> <mn>1</mn> <mi>ind</mi></msubsup> <annotation>${\\\\mathrm{E}}_{\\\\mathrm{1}}^{{\\\\mathrm{ind}}}$</annotation></semantics> </math> and <math> <semantics><msubsup><mi>E</mi> <mn>2</mn> <mi>d</mi></msubsup> <annotation>${\\\\mathrm{E}}_{\\\\mathrm{2}}^{\\\\mathrm{d}}$</annotation></semantics> </math> transitions at 300 K are determined to be 1.46 and 1.535 eV, respectively. The indirect transition <math> <semantics><msubsup><mi>E</mi> <mn>1</mn> <mi>ind</mi></msubsup> <annotation>${\\\\mathrm{E}}_{\\\\mathrm{1}}^{{\\\\mathrm{ind}}}$</annotation></semantics> </math> is confirmed by transmittance (T) measurement, while the direct transition <math> <semantics><msubsup><mi>E</mi> <mn>2</mn> <mi>d</mi></msubsup> <annotation>${\\\\mathrm{E}}_{\\\\mathrm{2}}^{\\\\mathrm{d}}$</annotation></semantics> </math> is simultaneously detected through micro-photoluminescence (µPL) and micro-thermoreflectance (µTR) measurements. A stacked p-Ga<sub>0.5</sub>In<sub>0.5</sub>Se/n-AgBiP<sub>2</sub>Se<sub>6</sub> heterojunction solar cell is successfully fabricated, achieving a photoelectric conversion efficiency (PCE) up to ≈0.583%. Furthermore, AgBiP<sub>2</sub>Se<sub>6</sub> is demonstrated as a promising photocatalyst, exhibiting a high degradation efficiency to organic dyes. ML-AgBiP<sub>2</sub>Se<sub>6</sub> exhibits a quasi-direct bandgap and ferroelectric behavior at room temperature, making it a strong candidate for next-generation electronic, optoelectronic, and environment-protection functions.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e14717\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202514717\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202514717","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

AgBiP2Se6是一种居里温度高于300 K的铁电半导体,也具有多种功能。在这项工作中,证明了尽管其本质上是间接带隙,多层(ML) AgBiP2Se6表现出意想不到的强光致发光,归因于其准直接带结构。间接跃迁和直接跃迁之间的能量差相对较小(≈0.075 eV),理论计算和实验观测都证实了这一点。电子能带结构分析证实了温度相关的光学测量结果,揭示了间接(e1ind {\mathrm{E}}_{\mathrm{1}}} {{\mathrm{ind}}}$)和直接(e2d ${\mathrm{E}}_{\mathrm{2}}} {\mathrm{d}}$)带隙的共存,声子辅助过程在材料的光电行为中起着重要作用。在300 K时,e1ind ${\mathrm{E}}_{\mathrm{1}}^{{\mathrm{ind}}}$和e2ind ${\mathrm{E}}_{\mathrm{2}}^{\mathrm{d} $的跃迁分别为1.46和1.535 eV。通过透射率(T)测量证实了间接跃迁e1 d ${\ mathm {E}}_{\ mathm {1}}^{{\ mathm {ind}}}$,而直接跃迁e2 d ${\ mathm {E}}_{\ mathm {2}}^{\ mathm {d}}$同时通过微光致发光(µPL)和微热反射(µTR)测量得到。成功制备了堆叠式p-Ga0.5In0.5Se/n-AgBiP2Se6异质结太阳能电池,光电转换效率(PCE)高达≈0.583%。此外,AgBiP2Se6被证明是一种很有前途的光催化剂,对有机染料具有很高的降解效率。ML-AgBiP2Se6在室温下表现出准直接带隙和铁电行为,使其成为下一代电子、光电和环保功能的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of Quasi-Direct Band Edge in a Multilayer Ferroelectric Semiconductor for Applications in Van Der Waals Stacked Heterojunction Solar Cell and Photocatalytic Devices.

AgBiP2Se6 is a ferroelectric semiconductor with a Curie temperature above 300 K which also possesses a variety of functional capabilities. In this work, it is demonstrated that despite its intrinsically indirect bandgap, multilayer (ML) AgBiP2Se6 exhibits unexpectedly strong photoluminescence, attributed to its quasi-direct band structure. The energy difference between the indirect and direct transitions is relatively small (≈0.075 eV), as confirmed by both theoretical calculations and experimental observations. Temperature-dependent optical measurements, corroborated by electronic band structure analysis, reveal the coexistence of indirect ( E 1 ind ${\mathrm{E}}_{\mathrm{1}}^{{\mathrm{ind}}}$ ) and direct ( E 2 d ${\mathrm{E}}_{\mathrm{2}}^{\mathrm{d}}$ ) bandgaps, with phonon-assisted processes playing a significant role in the material's optoelectronic behaviors. The E 1 ind ${\mathrm{E}}_{\mathrm{1}}^{{\mathrm{ind}}}$ and E 2 d ${\mathrm{E}}_{\mathrm{2}}^{\mathrm{d}}$ transitions at 300 K are determined to be 1.46 and 1.535 eV, respectively. The indirect transition E 1 ind ${\mathrm{E}}_{\mathrm{1}}^{{\mathrm{ind}}}$ is confirmed by transmittance (T) measurement, while the direct transition E 2 d ${\mathrm{E}}_{\mathrm{2}}^{\mathrm{d}}$ is simultaneously detected through micro-photoluminescence (µPL) and micro-thermoreflectance (µTR) measurements. A stacked p-Ga0.5In0.5Se/n-AgBiP2Se6 heterojunction solar cell is successfully fabricated, achieving a photoelectric conversion efficiency (PCE) up to ≈0.583%. Furthermore, AgBiP2Se6 is demonstrated as a promising photocatalyst, exhibiting a high degradation efficiency to organic dyes. ML-AgBiP2Se6 exhibits a quasi-direct bandgap and ferroelectric behavior at room temperature, making it a strong candidate for next-generation electronic, optoelectronic, and environment-protection functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信