In2S3/Ag2S s型光催化剂对太阳过氧化氢光合作用的异质界面工程

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-09 DOI:10.1002/cssc.202501827
Mengyu Lin, Yunhui He, Xiaolin Guo, Guangcan Xiao, Fang-Xing Xiao
{"title":"In2S3/Ag2S s型光催化剂对太阳过氧化氢光合作用的异质界面工程","authors":"Mengyu Lin, Yunhui He, Xiaolin Guo, Guangcan Xiao, Fang-Xing Xiao","doi":"10.1002/cssc.202501827","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production offers a sustainable alternative to the energy-intensive anthraquinone process. However, developing efficient semiconductor systems for oxygen reduction to H<sub>2</sub>O<sub>2</sub> remains challenging. Herein, we construct an In<sub>2</sub>S<sub>3</sub>/Ag<sub>2</sub>S heterostructure via a cation-exchange strategy, achieving atomic-level interfacial modulation that enhances charge separation and boosts H<sub>2</sub>O<sub>2</sub> production. Spectroscopic and radical trapping experiments identify the dominant active species and confirm a favorable two-electron oxygen reduction pathway. The tailored energy band alignment between In<sub>2</sub>S<sub>3</sub> and Ag<sub>2</sub>S promotes visible-light absorption and facilitates efficient carrier migration, leading to significantly improved photocatalytic performance. This work provides a feasible approach to designing transition metal chalcogenides (TMCs)-based heterostructures for sustainable H<sub>2</sub>O<sub>2</sub> synthesis and advances solar-to-chemical energy conversion.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501827"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterointerface Engineering of In<sub>2</sub>S<sub>3</sub>/Ag<sub>2</sub>S S-Scheme Photocatalyst Toward Solar Hydrogen Peroxide Photosynthesis.\",\"authors\":\"Mengyu Lin, Yunhui He, Xiaolin Guo, Guangcan Xiao, Fang-Xing Xiao\",\"doi\":\"10.1002/cssc.202501827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production offers a sustainable alternative to the energy-intensive anthraquinone process. However, developing efficient semiconductor systems for oxygen reduction to H<sub>2</sub>O<sub>2</sub> remains challenging. Herein, we construct an In<sub>2</sub>S<sub>3</sub>/Ag<sub>2</sub>S heterostructure via a cation-exchange strategy, achieving atomic-level interfacial modulation that enhances charge separation and boosts H<sub>2</sub>O<sub>2</sub> production. Spectroscopic and radical trapping experiments identify the dominant active species and confirm a favorable two-electron oxygen reduction pathway. The tailored energy band alignment between In<sub>2</sub>S<sub>3</sub> and Ag<sub>2</sub>S promotes visible-light absorption and facilitates efficient carrier migration, leading to significantly improved photocatalytic performance. This work provides a feasible approach to designing transition metal chalcogenides (TMCs)-based heterostructures for sustainable H<sub>2</sub>O<sub>2</sub> synthesis and advances solar-to-chemical energy conversion.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501827\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501827\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501827","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化过氧化氢(H2O2)生产为能源密集型的蒽醌工艺提供了一种可持续的替代方案。然而,开发高效的半导体系统将氧还原为H2O2仍然具有挑战性。在此,我们通过阳离子交换策略构建了In2S3/Ag2S异质结构,实现了原子级界面调制,增强了电荷分离并促进了H2O2的产生。光谱和自由基捕获实验确定了主要的活性物质,并证实了有利的双电子氧还原途径。In2S3和Ag2S之间量身定制的能带排列促进了可见光吸收,促进了有效的载流子迁移,从而显着提高了光催化性能。这项工作为设计基于过渡金属硫族化合物(TMCs)的异质结构用于可持续的H2O2合成提供了可行的方法,并推进了太阳能-化学能转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterointerface Engineering of In2S3/Ag2S S-Scheme Photocatalyst Toward Solar Hydrogen Peroxide Photosynthesis.

Photocatalytic hydrogen peroxide (H2O2) production offers a sustainable alternative to the energy-intensive anthraquinone process. However, developing efficient semiconductor systems for oxygen reduction to H2O2 remains challenging. Herein, we construct an In2S3/Ag2S heterostructure via a cation-exchange strategy, achieving atomic-level interfacial modulation that enhances charge separation and boosts H2O2 production. Spectroscopic and radical trapping experiments identify the dominant active species and confirm a favorable two-electron oxygen reduction pathway. The tailored energy band alignment between In2S3 and Ag2S promotes visible-light absorption and facilitates efficient carrier migration, leading to significantly improved photocatalytic performance. This work provides a feasible approach to designing transition metal chalcogenides (TMCs)-based heterostructures for sustainable H2O2 synthesis and advances solar-to-chemical energy conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信