体积型和纳米级BiVO4光阳极在光电氧化反应中的比较研究

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Seul-Yi Lee, Jinsu Kim, Radeya Vasquez, Eva Ng, Hyo Joong Lee, Iván Mora-Seró, Sixto Giménez
{"title":"体积型和纳米级BiVO4光阳极在光电氧化反应中的比较研究","authors":"Seul-Yi Lee,&nbsp;Jinsu Kim,&nbsp;Radeya Vasquez,&nbsp;Eva Ng,&nbsp;Hyo Joong Lee,&nbsp;Iván Mora-Seró,&nbsp;Sixto Giménez","doi":"10.1002/admi.202500543","DOIUrl":null,"url":null,"abstract":"<p>Most BiVO<sub>4</sub>-based photoelectrodes are prepared using the metal-organic decomposition (MOD) method, which produces a characteristic porous bulk BiVO<sub>4</sub> film. To study different photoelectrochemical (PEC) properties depending on the structure of BiVO<sub>4</sub>, bulk- and nanoscale (nano)-BiVO<sub>4</sub> photoelectrodes are prepared using the same MOD method on compact-SnO<sub>2</sub> (c-SnO<sub>2</sub>) and c-SnO<sub>2</sub>/mesoporous-SnO<sub>2</sub> electrodes, respectively. Unlike the well-known film structure of bulk-BiVO<sub>4</sub>, nanoscale dots of BiVO<sub>4</sub> are formed on the surface of the mesoporous SnO<sub>2</sub> particulate film, as confirmed by absorbance, X-ray diffraction (XRD), and transmission electron microscope (TEM) measurements. The PEC behavior of both BiVO<sub>4</sub> photoanodes is examined for glycerol and sulfite oxidation reactions. The optimized bulk- and nano-BiVO<sub>4</sub> PEC cells recorded photocurrents of 2.37 and 4.01 mA cm<sup>−2</sup> for glycerol oxidation and of 3.28 and 5.19 mA cm<sup>−2</sup> for sulfite oxidation, respectively. The excellent photocurrent generation ability of the nano-BiVO<sub>4</sub> electrode can be used to design an ideal BiVO<sub>4</sub>-based PEC cell. Impedance analysis is performed to explain the differences in charge transfer/transport between bulk- and nano-BiVO<sub>4</sub> PEC reactions and the reason behind the enhanced performance of nano-BiVO<sub>4</sub> compared to its bulk counterpart.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 19","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500543","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Bulk and Nanoscale BiVO4 Photoanodes in Photoelectrochemical Oxidation Reactions\",\"authors\":\"Seul-Yi Lee,&nbsp;Jinsu Kim,&nbsp;Radeya Vasquez,&nbsp;Eva Ng,&nbsp;Hyo Joong Lee,&nbsp;Iván Mora-Seró,&nbsp;Sixto Giménez\",\"doi\":\"10.1002/admi.202500543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most BiVO<sub>4</sub>-based photoelectrodes are prepared using the metal-organic decomposition (MOD) method, which produces a characteristic porous bulk BiVO<sub>4</sub> film. To study different photoelectrochemical (PEC) properties depending on the structure of BiVO<sub>4</sub>, bulk- and nanoscale (nano)-BiVO<sub>4</sub> photoelectrodes are prepared using the same MOD method on compact-SnO<sub>2</sub> (c-SnO<sub>2</sub>) and c-SnO<sub>2</sub>/mesoporous-SnO<sub>2</sub> electrodes, respectively. Unlike the well-known film structure of bulk-BiVO<sub>4</sub>, nanoscale dots of BiVO<sub>4</sub> are formed on the surface of the mesoporous SnO<sub>2</sub> particulate film, as confirmed by absorbance, X-ray diffraction (XRD), and transmission electron microscope (TEM) measurements. The PEC behavior of both BiVO<sub>4</sub> photoanodes is examined for glycerol and sulfite oxidation reactions. The optimized bulk- and nano-BiVO<sub>4</sub> PEC cells recorded photocurrents of 2.37 and 4.01 mA cm<sup>−2</sup> for glycerol oxidation and of 3.28 and 5.19 mA cm<sup>−2</sup> for sulfite oxidation, respectively. The excellent photocurrent generation ability of the nano-BiVO<sub>4</sub> electrode can be used to design an ideal BiVO<sub>4</sub>-based PEC cell. Impedance analysis is performed to explain the differences in charge transfer/transport between bulk- and nano-BiVO<sub>4</sub> PEC reactions and the reason behind the enhanced performance of nano-BiVO<sub>4</sub> compared to its bulk counterpart.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 19\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500543\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500543\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500543","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大多数基于BiVO4的光电极是使用金属有机分解(MOD)方法制备的,该方法可以产生具有特征的多孔体BiVO4膜。为了研究BiVO4结构对其光电化学(PEC)性能的影响,采用相同的MOD方法分别在致密sno2 (c-SnO2)和c-SnO2/介孔sno2电极上制备了体级和纳米级(nano)-BiVO4光电极。与众所周知的大块BiVO4薄膜结构不同,通过吸光度、x射线衍射(XRD)和透射电子显微镜(TEM)测量证实,BiVO4的纳米级点形成在介孔SnO2颗粒膜表面。研究了两种BiVO4光阳极在甘油和亚硫酸盐氧化反应中的PEC行为。优化后的体积型和纳米型bivo4 PEC电池,甘油氧化时的光电流分别为2.37和4.01 mA cm - 2,亚硫酸氧化时的光电流分别为3.28和5.19 mA cm - 2。纳米bivo4电极具有良好的光电流产生能力,可用于设计理想的bivo4基PEC电池。阻抗分析解释了块体和纳米bivo4之间电荷转移/输运的差异,以及纳米bivo4与块体相比性能增强的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative Study of Bulk and Nanoscale BiVO4 Photoanodes in Photoelectrochemical Oxidation Reactions

Comparative Study of Bulk and Nanoscale BiVO4 Photoanodes in Photoelectrochemical Oxidation Reactions

Most BiVO4-based photoelectrodes are prepared using the metal-organic decomposition (MOD) method, which produces a characteristic porous bulk BiVO4 film. To study different photoelectrochemical (PEC) properties depending on the structure of BiVO4, bulk- and nanoscale (nano)-BiVO4 photoelectrodes are prepared using the same MOD method on compact-SnO2 (c-SnO2) and c-SnO2/mesoporous-SnO2 electrodes, respectively. Unlike the well-known film structure of bulk-BiVO4, nanoscale dots of BiVO4 are formed on the surface of the mesoporous SnO2 particulate film, as confirmed by absorbance, X-ray diffraction (XRD), and transmission electron microscope (TEM) measurements. The PEC behavior of both BiVO4 photoanodes is examined for glycerol and sulfite oxidation reactions. The optimized bulk- and nano-BiVO4 PEC cells recorded photocurrents of 2.37 and 4.01 mA cm−2 for glycerol oxidation and of 3.28 and 5.19 mA cm−2 for sulfite oxidation, respectively. The excellent photocurrent generation ability of the nano-BiVO4 electrode can be used to design an ideal BiVO4-based PEC cell. Impedance analysis is performed to explain the differences in charge transfer/transport between bulk- and nano-BiVO4 PEC reactions and the reason behind the enhanced performance of nano-BiVO4 compared to its bulk counterpart.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信