基于数字孪生概念的单个多单元列车损伤预测方法

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Xingyuan Xu, Liyang Xie, Jianpeng Chen
{"title":"基于数字孪生概念的单个多单元列车损伤预测方法","authors":"Xingyuan Xu,&nbsp;Liyang Xie,&nbsp;Jianpeng Chen","doi":"10.1111/ffe.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Digital twin (DT) framework based on dynamic Bayesian network (DBN) has established a novel paradigm for damage prognosis. This study focuses on the multidimensional uncertainty characterization in damage prognosis of individual multiple-unit trains (IMUTs). The structural feature perception model is developed, integrating a probabilistic load equivalence quantification model based on a generalized durability load spectrum for IMUT, a normalized fatigue crack growth rate model with uncertainty propagation and a probabilistic description model for equivalent initial flaw size. A hybrid uncertainty quantification method is employed to achieve synergistic modeling of deterministic and stochastic parameters. DT experimental platform centered on bogie welded structures is established, implementing a closed-loop validation mechanism between physical tests and virtual models. Experimental results demonstrate tracking errors ≤ 6.8% for damage parameters (\n<span></span><math>\n <mi>m</mi>\n <mo>,</mo>\n <mtext>logC</mtext></math>) and a 90.5% improvement in prediction accuracy compared to conventional methods.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 11","pages":"4552-4569"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individual Multiple-Unit Train Damage Prognosis Method Based on Digital-Twin Concept\",\"authors\":\"Xingyuan Xu,&nbsp;Liyang Xie,&nbsp;Jianpeng Chen\",\"doi\":\"10.1111/ffe.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Digital twin (DT) framework based on dynamic Bayesian network (DBN) has established a novel paradigm for damage prognosis. This study focuses on the multidimensional uncertainty characterization in damage prognosis of individual multiple-unit trains (IMUTs). The structural feature perception model is developed, integrating a probabilistic load equivalence quantification model based on a generalized durability load spectrum for IMUT, a normalized fatigue crack growth rate model with uncertainty propagation and a probabilistic description model for equivalent initial flaw size. A hybrid uncertainty quantification method is employed to achieve synergistic modeling of deterministic and stochastic parameters. DT experimental platform centered on bogie welded structures is established, implementing a closed-loop validation mechanism between physical tests and virtual models. Experimental results demonstrate tracking errors ≤ 6.8% for damage parameters (\\n<span></span><math>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mtext>logC</mtext></math>) and a 90.5% improvement in prediction accuracy compared to conventional methods.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 11\",\"pages\":\"4552-4569\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70053\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70053","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于动态贝叶斯网络(DBN)的数字孪生(DT)框架建立了一种新的损伤预测范式。本文主要研究单个多单元列车(imut)损伤预测的多维不确定性表征。将基于广义耐久性载荷谱的IMUT概率载荷等效量化模型、考虑不确定性扩展的归一化疲劳裂纹扩展速率模型和等效初始缺陷尺寸的概率描述模型集成在一起,建立了结构特征感知模型。采用一种混合不确定性量化方法,实现了确定性参数和随机参数的协同建模。建立了以转向架焊接结构为中心的DT实验平台,实现了物理试验与虚拟模型之间的闭环验证机制。实验结果表明,与传统方法相比,该方法对损伤参数(m, logC)的跟踪误差≤6.8%,预测精度提高了90.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Individual Multiple-Unit Train Damage Prognosis Method Based on Digital-Twin Concept

Individual Multiple-Unit Train Damage Prognosis Method Based on Digital-Twin Concept

Digital twin (DT) framework based on dynamic Bayesian network (DBN) has established a novel paradigm for damage prognosis. This study focuses on the multidimensional uncertainty characterization in damage prognosis of individual multiple-unit trains (IMUTs). The structural feature perception model is developed, integrating a probabilistic load equivalence quantification model based on a generalized durability load spectrum for IMUT, a normalized fatigue crack growth rate model with uncertainty propagation and a probabilistic description model for equivalent initial flaw size. A hybrid uncertainty quantification method is employed to achieve synergistic modeling of deterministic and stochastic parameters. DT experimental platform centered on bogie welded structures is established, implementing a closed-loop validation mechanism between physical tests and virtual models. Experimental results demonstrate tracking errors ≤ 6.8% for damage parameters ( m , logC) and a 90.5% improvement in prediction accuracy compared to conventional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信