Bingxin Zhou
(, ), Zhuo Yang
(, ), Quan Zhang
(, ), Baizeng Fang
(, ), David P. Wilkinson, Jiujun Zhang
(, ), Zhonghao Rao
(, )
{"title":"用于延长可充电锂电池工作温度范围的电解质添加剂","authors":"Bingxin Zhou \n (, ), Zhuo Yang \n (, ), Quan Zhang \n (, ), Baizeng Fang \n (, ), David P. Wilkinson, Jiujun Zhang \n (, ), Zhonghao Rao \n (, )","doi":"10.1007/s40843-025-3514-3","DOIUrl":null,"url":null,"abstract":"<div><p>Rechargeable lithium batteries (LBs) that can withstand extreme temperatures (high and low, HT/LT) are essential for achieving carbon neutrality. However, the operational reliability of current LBs deteriorates significantly when exposed to these conditions. Electrolyte additives characterized by a small dosage, low cost, and minimal reduction in energy density have been shown to mitigate thermal challenges effectively by regulating interfaces and enhancing ion transport. This review systematically examines the failure mechanisms of electrolytes under HT/LT conditions, including thermally driven side reactions, sluggish ion migration and the formation of an unstable solid electrolyte interphase (SEI). State-of-the-art additives are classified and their working mechanisms, functions, advantages and disadvantages are analyzed. Design principles for advanced additives are proposed, emphasizing the synergistic optimization of oxidative stability at HT and ion mobility at LT. Although these strategies are tailored to lithium-based systems, they offer transferable insights for other metal-based batteries (e.g., sodium/potassium) that struggle with temperature-dependent performance degradation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3425 - 3455"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte additives for extending the operational temperature range of rechargeable lithium batteries\",\"authors\":\"Bingxin Zhou \\n (, ), Zhuo Yang \\n (, ), Quan Zhang \\n (, ), Baizeng Fang \\n (, ), David P. Wilkinson, Jiujun Zhang \\n (, ), Zhonghao Rao \\n (, )\",\"doi\":\"10.1007/s40843-025-3514-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rechargeable lithium batteries (LBs) that can withstand extreme temperatures (high and low, HT/LT) are essential for achieving carbon neutrality. However, the operational reliability of current LBs deteriorates significantly when exposed to these conditions. Electrolyte additives characterized by a small dosage, low cost, and minimal reduction in energy density have been shown to mitigate thermal challenges effectively by regulating interfaces and enhancing ion transport. This review systematically examines the failure mechanisms of electrolytes under HT/LT conditions, including thermally driven side reactions, sluggish ion migration and the formation of an unstable solid electrolyte interphase (SEI). State-of-the-art additives are classified and their working mechanisms, functions, advantages and disadvantages are analyzed. Design principles for advanced additives are proposed, emphasizing the synergistic optimization of oxidative stability at HT and ion mobility at LT. Although these strategies are tailored to lithium-based systems, they offer transferable insights for other metal-based batteries (e.g., sodium/potassium) that struggle with temperature-dependent performance degradation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 10\",\"pages\":\"3425 - 3455\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3514-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3514-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrolyte additives for extending the operational temperature range of rechargeable lithium batteries
Rechargeable lithium batteries (LBs) that can withstand extreme temperatures (high and low, HT/LT) are essential for achieving carbon neutrality. However, the operational reliability of current LBs deteriorates significantly when exposed to these conditions. Electrolyte additives characterized by a small dosage, low cost, and minimal reduction in energy density have been shown to mitigate thermal challenges effectively by regulating interfaces and enhancing ion transport. This review systematically examines the failure mechanisms of electrolytes under HT/LT conditions, including thermally driven side reactions, sluggish ion migration and the formation of an unstable solid electrolyte interphase (SEI). State-of-the-art additives are classified and their working mechanisms, functions, advantages and disadvantages are analyzed. Design principles for advanced additives are proposed, emphasizing the synergistic optimization of oxidative stability at HT and ion mobility at LT. Although these strategies are tailored to lithium-based systems, they offer transferable insights for other metal-based batteries (e.g., sodium/potassium) that struggle with temperature-dependent performance degradation.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.