通过控制氮化的异质界面工程实现了Mo1.33B2Tx纳米片的ghz - thz宽带电磁波吸收

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenxuan Wang  (, ), Hongyun Qin  (, ), Hongyu Li  (, ), Di Lan  (, ), Yuxuan Wang  (, ), Yuxuan Han  (, ), Dong Liu  (, ), Ransheng Liu  (, ), Guanglei Wu  (, )
{"title":"通过控制氮化的异质界面工程实现了Mo1.33B2Tx纳米片的ghz - thz宽带电磁波吸收","authors":"Wenxuan Wang \n (,&nbsp;),&nbsp;Hongyun Qin \n (,&nbsp;),&nbsp;Hongyu Li \n (,&nbsp;),&nbsp;Di Lan \n (,&nbsp;),&nbsp;Yuxuan Wang \n (,&nbsp;),&nbsp;Yuxuan Han \n (,&nbsp;),&nbsp;Dong Liu \n (,&nbsp;),&nbsp;Ransheng Liu \n (,&nbsp;),&nbsp;Guanglei Wu \n (,&nbsp;)","doi":"10.1007/s40843-025-3624-y","DOIUrl":null,"url":null,"abstract":"<div><p>MBene materials, as emerging two-dimensional (2D) transition metal borides, exhibit exceptional potential for electromagnetic (EM) wave absorption due to their high conductivity and tunable surface properties. However, their structural instability and limited EM absorption efficiency in the gigahertz (GHz) or terahertz (THz) band remain critical challenges. Controlled nitridation enables the construction of heterogeneous interfaces, providing an effective strategy for precisely tailoring EM absorption properties. Herein, through NH<sub>3</sub> annealing of exfoliated Mo<sub>1.33</sub>B<sub>2</sub>T<sub><i>x</i></sub> nanosheets, we engineered a hierarchical nanoflower morphology with MoN/MoB heterointerfaces, which synergistically enhanced dielectric loss and impedance matching. The optimized Mo<sub>1.33</sub>B<sub>2</sub>T<sub><i>x</i></sub>-650 absorber achieved a record minimum reflection loss (RL<sub>min</sub>) of −61.4 dB and a broad effective absorption bandwidth across key GHz frequencies. Notably, monolayer Mo<sub>1.33</sub>B<sub>2</sub>T<sub><i>x</i></sub> nanosheets simultaneously exhibited ultrahigh THz wave absorption (94.54% at 0.5–3.8 THz) and near-perfect visible transparency (99.12%), unlocking unprecedented potential for transparent optoelectronic devices. Combined with superior thermal and mechanical properties, this study establishes a generalizable paradigm for designing multifunctional MBene-based absorbers operating across GHz to THz spectra.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3757 - 3766"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterointerface engineering via controlled nitridation enables GHz-to-THz broadband electromagnetic wave absorption in Mo1.33B2Tx nanosheets\",\"authors\":\"Wenxuan Wang \\n (,&nbsp;),&nbsp;Hongyun Qin \\n (,&nbsp;),&nbsp;Hongyu Li \\n (,&nbsp;),&nbsp;Di Lan \\n (,&nbsp;),&nbsp;Yuxuan Wang \\n (,&nbsp;),&nbsp;Yuxuan Han \\n (,&nbsp;),&nbsp;Dong Liu \\n (,&nbsp;),&nbsp;Ransheng Liu \\n (,&nbsp;),&nbsp;Guanglei Wu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MBene materials, as emerging two-dimensional (2D) transition metal borides, exhibit exceptional potential for electromagnetic (EM) wave absorption due to their high conductivity and tunable surface properties. However, their structural instability and limited EM absorption efficiency in the gigahertz (GHz) or terahertz (THz) band remain critical challenges. Controlled nitridation enables the construction of heterogeneous interfaces, providing an effective strategy for precisely tailoring EM absorption properties. Herein, through NH<sub>3</sub> annealing of exfoliated Mo<sub>1.33</sub>B<sub>2</sub>T<sub><i>x</i></sub> nanosheets, we engineered a hierarchical nanoflower morphology with MoN/MoB heterointerfaces, which synergistically enhanced dielectric loss and impedance matching. The optimized Mo<sub>1.33</sub>B<sub>2</sub>T<sub><i>x</i></sub>-650 absorber achieved a record minimum reflection loss (RL<sub>min</sub>) of −61.4 dB and a broad effective absorption bandwidth across key GHz frequencies. Notably, monolayer Mo<sub>1.33</sub>B<sub>2</sub>T<sub><i>x</i></sub> nanosheets simultaneously exhibited ultrahigh THz wave absorption (94.54% at 0.5–3.8 THz) and near-perfect visible transparency (99.12%), unlocking unprecedented potential for transparent optoelectronic devices. Combined with superior thermal and mechanical properties, this study establishes a generalizable paradigm for designing multifunctional MBene-based absorbers operating across GHz to THz spectra.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 10\",\"pages\":\"3757 - 3766\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3624-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3624-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MBene材料作为新兴的二维(2D)过渡金属硼化物,由于其高导电性和可调谐的表面特性,表现出非凡的电磁(EM)吸收潜力。然而,它们的结构不稳定性和在千兆赫(GHz)或太赫兹(THz)频段有限的电磁吸收效率仍然是关键的挑战。控制氮化可以构建异质界面,为精确定制EM吸收特性提供了有效的策略。通过NH3退火,我们设计了具有MoN/MoB异质界面的分层纳米花形态,协同增强了介电损耗和阻抗匹配。优化后的Mo1.33B2Tx-650吸收器实现了创纪录的最小反射损耗(RLmin) - 61.4 dB,并在关键GHz频率上具有较宽的有效吸收带宽。值得注意的是,单层Mo1.33B2Tx纳米片同时表现出超高的太赫兹波吸收(0.5-3.8太赫兹时为94.54%)和近乎完美的可见光透明度(99.12%),为透明光电器件释放了前所未有的潜力。结合优越的热性能和机械性能,本研究建立了一种可推广的范例,用于设计在GHz到太赫兹光谱范围内工作的多功能mbene基吸收器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterointerface engineering via controlled nitridation enables GHz-to-THz broadband electromagnetic wave absorption in Mo1.33B2Tx nanosheets

MBene materials, as emerging two-dimensional (2D) transition metal borides, exhibit exceptional potential for electromagnetic (EM) wave absorption due to their high conductivity and tunable surface properties. However, their structural instability and limited EM absorption efficiency in the gigahertz (GHz) or terahertz (THz) band remain critical challenges. Controlled nitridation enables the construction of heterogeneous interfaces, providing an effective strategy for precisely tailoring EM absorption properties. Herein, through NH3 annealing of exfoliated Mo1.33B2Tx nanosheets, we engineered a hierarchical nanoflower morphology with MoN/MoB heterointerfaces, which synergistically enhanced dielectric loss and impedance matching. The optimized Mo1.33B2Tx-650 absorber achieved a record minimum reflection loss (RLmin) of −61.4 dB and a broad effective absorption bandwidth across key GHz frequencies. Notably, monolayer Mo1.33B2Tx nanosheets simultaneously exhibited ultrahigh THz wave absorption (94.54% at 0.5–3.8 THz) and near-perfect visible transparency (99.12%), unlocking unprecedented potential for transparent optoelectronic devices. Combined with superior thermal and mechanical properties, this study establishes a generalizable paradigm for designing multifunctional MBene-based absorbers operating across GHz to THz spectra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信