利用集成了深度学习算法和软执行器的MXene/CNTs/TPU柔性应变传感器进行植物生长监测、预测和自我调节

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinyi Zhao  (, ), Xiangsheng Lin  (, ), Zhao Yao  (, ), Yuanyue Li  (, ), Yang Li  (, ), Ningji Gong  (, )
{"title":"利用集成了深度学习算法和软执行器的MXene/CNTs/TPU柔性应变传感器进行植物生长监测、预测和自我调节","authors":"Xinyi Zhao \n (,&nbsp;),&nbsp;Xiangsheng Lin \n (,&nbsp;),&nbsp;Zhao Yao \n (,&nbsp;),&nbsp;Yuanyue Li \n (,&nbsp;),&nbsp;Yang Li \n (,&nbsp;),&nbsp;Ningji Gong \n (,&nbsp;)","doi":"10.1007/s40843-025-3502-2","DOIUrl":null,"url":null,"abstract":"<div><p>Smart agriculture utilizes sensors and software to control agricultural production through mobile or computer platforms, enabling unmanned, automated, and intelligent management. Recently, research and development in plant growth monitoring technologies have garnered significant attention. The challenge lies in achieving long-term monitoring, phased predictions, and plant self-regulation without harming the plants. The present study demonstrates the fabrication of plant-compatible and breathable tensile and bending strain sensors using composite nanofiber membranes (CNMs) composed of Ti<sub>2</sub>C<sub>2</sub>T<sub><i>x</i></sub> (MXene), carbon nanotubes (CNTs), and thermoplastic polyurethanes (TPU) through electrospinning and ultrasonic immersion techniques. The MXene and CNTs synergistically form a dual-network conductive structure on the TPU nanofiber membrane, thereby imparting the composite membrane with remarkable tensile sensitivity (5.41, 7.39, and 3.39 within the ranges of 0%–20%, 20%–50%, and 50%–70%, respectively) as well as exceptional bending sensitivity (1.79, 0.89, and 0.46 within the ranges of 0°–30°, 30°–90°, and 90°–120°, respectively). The tensile strain sensor, combined with a deep learning Long Short-Term Memory (LSTM) model, establishes a platform for plant growth monitoring and prediction. The bending strain sensor, integrated with a shape memory alloy (SMA)-based soft actuator, forms a plant sensing-actuating system to assist in plant leaf growth. This work leverages MXene/CNTs/TPU CNMs to flexibly prepare strain sensors for specific applications, combining deep learning and soft actuators to achieve plant growth prediction and self-regulation. This research holds significant importance in advancing the development of smart agriculture.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3715 - 3727"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant growth monitoring, prediction, and self-regulation utilizing MXene/CNTs/TPU flexible strain sensors integrated with deep learning algorithms and soft actuators\",\"authors\":\"Xinyi Zhao \\n (,&nbsp;),&nbsp;Xiangsheng Lin \\n (,&nbsp;),&nbsp;Zhao Yao \\n (,&nbsp;),&nbsp;Yuanyue Li \\n (,&nbsp;),&nbsp;Yang Li \\n (,&nbsp;),&nbsp;Ningji Gong \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3502-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Smart agriculture utilizes sensors and software to control agricultural production through mobile or computer platforms, enabling unmanned, automated, and intelligent management. Recently, research and development in plant growth monitoring technologies have garnered significant attention. The challenge lies in achieving long-term monitoring, phased predictions, and plant self-regulation without harming the plants. The present study demonstrates the fabrication of plant-compatible and breathable tensile and bending strain sensors using composite nanofiber membranes (CNMs) composed of Ti<sub>2</sub>C<sub>2</sub>T<sub><i>x</i></sub> (MXene), carbon nanotubes (CNTs), and thermoplastic polyurethanes (TPU) through electrospinning and ultrasonic immersion techniques. The MXene and CNTs synergistically form a dual-network conductive structure on the TPU nanofiber membrane, thereby imparting the composite membrane with remarkable tensile sensitivity (5.41, 7.39, and 3.39 within the ranges of 0%–20%, 20%–50%, and 50%–70%, respectively) as well as exceptional bending sensitivity (1.79, 0.89, and 0.46 within the ranges of 0°–30°, 30°–90°, and 90°–120°, respectively). The tensile strain sensor, combined with a deep learning Long Short-Term Memory (LSTM) model, establishes a platform for plant growth monitoring and prediction. The bending strain sensor, integrated with a shape memory alloy (SMA)-based soft actuator, forms a plant sensing-actuating system to assist in plant leaf growth. This work leverages MXene/CNTs/TPU CNMs to flexibly prepare strain sensors for specific applications, combining deep learning and soft actuators to achieve plant growth prediction and self-regulation. This research holds significant importance in advancing the development of smart agriculture.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 10\",\"pages\":\"3715 - 3727\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3502-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3502-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

智慧农业利用传感器和软件,通过移动或计算机平台控制农业生产,实现无人化、自动化、智能化管理。近年来,植物生长监测技术的研究与开发引起了人们的广泛关注。挑战在于如何在不伤害植物的情况下实现长期监测、分阶段预测和植物自我调节。本研究展示了通过静电纺丝和超声波浸泡技术,使用由Ti2C2Tx (MXene)、碳纳米管(CNTs)和热塑性聚氨酯(TPU)组成的复合纳米纤维膜(CNMs)制造植物兼容和透气的拉伸和弯曲应变传感器。MXene和CNTs协同作用在TPU纳米纤维膜上形成双网络导电结构,从而使复合膜具有显著的拉伸灵敏度(在0%-20%、20%-50%和50%-70%范围内分别为5.41、7.39和3.39)和优异的弯曲灵敏度(在0°-30°、30°-90°和90°-120°范围内分别为1.79、0.89和0.46)。该张力应变传感器结合深度学习长短期记忆(LSTM)模型,为植物生长监测和预测搭建了平台。弯曲应变传感器与基于形状记忆合金(SMA)的软执行器集成在一起,形成了一个植物传感驱动系统,以帮助植物叶片生长。本研究利用MXene/CNTs/TPU cnm灵活制备特定应用的应变传感器,结合深度学习和软致动器实现植物生长预测和自我调节。该研究对推进智慧农业的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant growth monitoring, prediction, and self-regulation utilizing MXene/CNTs/TPU flexible strain sensors integrated with deep learning algorithms and soft actuators

Smart agriculture utilizes sensors and software to control agricultural production through mobile or computer platforms, enabling unmanned, automated, and intelligent management. Recently, research and development in plant growth monitoring technologies have garnered significant attention. The challenge lies in achieving long-term monitoring, phased predictions, and plant self-regulation without harming the plants. The present study demonstrates the fabrication of plant-compatible and breathable tensile and bending strain sensors using composite nanofiber membranes (CNMs) composed of Ti2C2Tx (MXene), carbon nanotubes (CNTs), and thermoplastic polyurethanes (TPU) through electrospinning and ultrasonic immersion techniques. The MXene and CNTs synergistically form a dual-network conductive structure on the TPU nanofiber membrane, thereby imparting the composite membrane with remarkable tensile sensitivity (5.41, 7.39, and 3.39 within the ranges of 0%–20%, 20%–50%, and 50%–70%, respectively) as well as exceptional bending sensitivity (1.79, 0.89, and 0.46 within the ranges of 0°–30°, 30°–90°, and 90°–120°, respectively). The tensile strain sensor, combined with a deep learning Long Short-Term Memory (LSTM) model, establishes a platform for plant growth monitoring and prediction. The bending strain sensor, integrated with a shape memory alloy (SMA)-based soft actuator, forms a plant sensing-actuating system to assist in plant leaf growth. This work leverages MXene/CNTs/TPU CNMs to flexibly prepare strain sensors for specific applications, combining deep learning and soft actuators to achieve plant growth prediction and self-regulation. This research holds significant importance in advancing the development of smart agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信