基于轨道-晶格协同调制策略的低成本mn基P2/O3异质结构层状氧化物阴极钠离子电池

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun-Xu Guo  (, ), Zhuang-Chun Jian  (, ), Yan-Fang Zhu  (, ), Qi-Cong Ling  (, ), Meng-Ying Li  (, ), Xin-Yu Liu  (, ), Hanshen Xin  (, ), Yao Xiao  (, )
{"title":"基于轨道-晶格协同调制策略的低成本mn基P2/O3异质结构层状氧化物阴极钠离子电池","authors":"Jun-Xu Guo \n (,&nbsp;),&nbsp;Zhuang-Chun Jian \n (,&nbsp;),&nbsp;Yan-Fang Zhu \n (,&nbsp;),&nbsp;Qi-Cong Ling \n (,&nbsp;),&nbsp;Meng-Ying Li \n (,&nbsp;),&nbsp;Xin-Yu Liu \n (,&nbsp;),&nbsp;Hanshen Xin \n (,&nbsp;),&nbsp;Yao Xiao \n (,&nbsp;)","doi":"10.1007/s40843-025-3567-x","DOIUrl":null,"url":null,"abstract":"<div><p>Manganese-based (Mn-based) layered oxides have become the prospective cathode options for sodium-ion batteries (SIBs) due to the high theoretical capacity and low cost. However, the Mn<sup>3+</sup> (high spin state) accumulated in Na<sup>+</sup> intercalation/deintercalation is susceptible to inducing a severe Jahn-Teller effect in the octahedral coordination, leading to irreversible phase transitions and lattice deformations. Herein, we designed a series of Ti-substitution P2/O3 heterostructured cathode materials, and innovated an orbital-lattice synergistic modulation strategy to effectively boost the structural stability of the materials. <i>In situ</i> X-ray diffraction (<i>in situ</i> XRD) patterns indicated that the coupling effect between the P2/O3 biphasic structure effectively inhibits the irreversible phase transitions of P2 to O2 at high voltages. Synchrotron X-ray absorption spectroscopy (XAS) analysis shows that the d<sup>0</sup> electronic configuration of Ti<sup>4+</sup> eliminates the degenerate electronic states inherent in the d<sup>4</sup> configuration of Mn<sup>3+</sup>, effectively suppressing Jahn-Teller distortion. Accordingly, the optimized P2/O3-Na<sub>0.85</sub>Mn<sub>0.95</sub>Ti<sub>0.05</sub>O<sub>2</sub> (NMT-05) electrode exhibits remarkable energy density and kinetic properties in both the half-cell system and full-cell systems that matched with a hard carbon anode. This work could offer guidelines for exploiting low-cost and highly stable practical Mn-based oxide cathode materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3685 - 3694"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cost Mn-based P2/O3 heterostructured layered oxide cathodes based on orbital-lattice synergistic modulation strategy for sodium-ion batteries\",\"authors\":\"Jun-Xu Guo \\n (,&nbsp;),&nbsp;Zhuang-Chun Jian \\n (,&nbsp;),&nbsp;Yan-Fang Zhu \\n (,&nbsp;),&nbsp;Qi-Cong Ling \\n (,&nbsp;),&nbsp;Meng-Ying Li \\n (,&nbsp;),&nbsp;Xin-Yu Liu \\n (,&nbsp;),&nbsp;Hanshen Xin \\n (,&nbsp;),&nbsp;Yao Xiao \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3567-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Manganese-based (Mn-based) layered oxides have become the prospective cathode options for sodium-ion batteries (SIBs) due to the high theoretical capacity and low cost. However, the Mn<sup>3+</sup> (high spin state) accumulated in Na<sup>+</sup> intercalation/deintercalation is susceptible to inducing a severe Jahn-Teller effect in the octahedral coordination, leading to irreversible phase transitions and lattice deformations. Herein, we designed a series of Ti-substitution P2/O3 heterostructured cathode materials, and innovated an orbital-lattice synergistic modulation strategy to effectively boost the structural stability of the materials. <i>In situ</i> X-ray diffraction (<i>in situ</i> XRD) patterns indicated that the coupling effect between the P2/O3 biphasic structure effectively inhibits the irreversible phase transitions of P2 to O2 at high voltages. Synchrotron X-ray absorption spectroscopy (XAS) analysis shows that the d<sup>0</sup> electronic configuration of Ti<sup>4+</sup> eliminates the degenerate electronic states inherent in the d<sup>4</sup> configuration of Mn<sup>3+</sup>, effectively suppressing Jahn-Teller distortion. Accordingly, the optimized P2/O3-Na<sub>0.85</sub>Mn<sub>0.95</sub>Ti<sub>0.05</sub>O<sub>2</sub> (NMT-05) electrode exhibits remarkable energy density and kinetic properties in both the half-cell system and full-cell systems that matched with a hard carbon anode. This work could offer guidelines for exploiting low-cost and highly stable practical Mn-based oxide cathode materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 10\",\"pages\":\"3685 - 3694\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3567-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3567-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锰基(mn基)层状氧化物因其理论容量大、成本低而成为钠离子电池(sib)极具前景的阴极材料。然而,在Na+嵌入/脱嵌过程中积累的Mn3+(高自旋态)容易在八面体配位中诱发严重的Jahn-Teller效应,导致不可逆的相变和晶格变形。在此,我们设计了一系列ti取代P2/O3异质结构正极材料,并创新了轨道-晶格协同调制策略,有效提高了材料的结构稳定性。原位x射线衍射(In situ XRD)图谱表明,P2/O3两相结构之间的耦合效应有效地抑制了高压下P2向O2的不可逆相变。同步加速器x射线吸收光谱(XAS)分析表明,Ti4+的d0电子构型消除了Mn3+的d4电子构型固有的简并态,有效地抑制了Jahn-Teller畸变。因此,优化后的P2/O3-Na0.85Mn0.95Ti0.05O2 (NMT-05)电极在与硬碳阳极匹配的半电池体系和全电池体系中均表现出显著的能量密度和动力学性能。这项工作为开发低成本、高稳定的实用锰基氧化物正极材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-cost Mn-based P2/O3 heterostructured layered oxide cathodes based on orbital-lattice synergistic modulation strategy for sodium-ion batteries

Manganese-based (Mn-based) layered oxides have become the prospective cathode options for sodium-ion batteries (SIBs) due to the high theoretical capacity and low cost. However, the Mn3+ (high spin state) accumulated in Na+ intercalation/deintercalation is susceptible to inducing a severe Jahn-Teller effect in the octahedral coordination, leading to irreversible phase transitions and lattice deformations. Herein, we designed a series of Ti-substitution P2/O3 heterostructured cathode materials, and innovated an orbital-lattice synergistic modulation strategy to effectively boost the structural stability of the materials. In situ X-ray diffraction (in situ XRD) patterns indicated that the coupling effect between the P2/O3 biphasic structure effectively inhibits the irreversible phase transitions of P2 to O2 at high voltages. Synchrotron X-ray absorption spectroscopy (XAS) analysis shows that the d0 electronic configuration of Ti4+ eliminates the degenerate electronic states inherent in the d4 configuration of Mn3+, effectively suppressing Jahn-Teller distortion. Accordingly, the optimized P2/O3-Na0.85Mn0.95Ti0.05O2 (NMT-05) electrode exhibits remarkable energy density and kinetic properties in both the half-cell system and full-cell systems that matched with a hard carbon anode. This work could offer guidelines for exploiting low-cost and highly stable practical Mn-based oxide cathode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信