Tianheng Du
(, ), Sijie Chen
(, ), Xianzhe Zhao
(, ), Xueheng Liu
(, ), Lifang Zhang
(, ), Xi Zhou
(, ), Linbo Li
(, ), Tongfei Li
(, ), Tao Qian
(, )
{"title":"电荷极化镧系配位策略使稀土定制的金属烯电催化剂的活性-稳定性协同作用","authors":"Tianheng Du \n (, ), Sijie Chen \n (, ), Xianzhe Zhao \n (, ), Xueheng Liu \n (, ), Lifang Zhang \n (, ), Xi Zhou \n (, ), Linbo Li \n (, ), Tongfei Li \n (, ), Tao Qian \n (, )","doi":"10.1007/s40843-025-3626-2","DOIUrl":null,"url":null,"abstract":"<div><p>The development of durable electrocatalysts overcoming activity-stability compromises remains pivotal for advancing anion-exchange membrane fuel cells (AEMFCs). Herein, we engineer a rare earth-incorporated Pd-based metallene (PdLaCe) through lanthanide-based bimetallic coordination, resolving critical limitations in oxygen reduction reaction (ORR) catalysis. Combined experimental characterization and theoretical simulations reveal that La/Ce dual-doping induces charge polarization to generate Pd<sup><i>δ</i>−</sup>-La/Ce<sup><i>δ</i>+</sup> active sites, synergistically optimizing the electronic structure via d-band center downshifting. This configuration weakens oxygen intermediate adsorption while enhancing structural integrity across thermal cycles. The optimized PdLaCe metallene delivers exceptional ORR performance, achieving a record half-wave potential of 0.903 V (vs. RHE) with negligible degradation (<6%) after 20,000 cycles, far surpassing commercial Pt/C benchmarks. Integrated into AEMFCs, it demonstrates a peak power density of 82.8 mW cm<sup>−2</sup> alongside unprecedented stability (0.8 V for 22 h). Fundamental insights into lanthanide-induced charge redistribution establish a universal paradigm for designing robust multimetallic electrocatalysts via rare earth coordination engineering, bridging critical gaps between functional optimization and industrial-scale fuel cell applications. This work provides transformative strategies for next-generation energy conversion systems requiring high efficiency and ultra-stability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3607 - 3617"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge-polarized lanthanide coordination strategy enables activity-stability synergy in rare earth-tailored metallene electrocatalysts\",\"authors\":\"Tianheng Du \\n (, ), Sijie Chen \\n (, ), Xianzhe Zhao \\n (, ), Xueheng Liu \\n (, ), Lifang Zhang \\n (, ), Xi Zhou \\n (, ), Linbo Li \\n (, ), Tongfei Li \\n (, ), Tao Qian \\n (, )\",\"doi\":\"10.1007/s40843-025-3626-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of durable electrocatalysts overcoming activity-stability compromises remains pivotal for advancing anion-exchange membrane fuel cells (AEMFCs). Herein, we engineer a rare earth-incorporated Pd-based metallene (PdLaCe) through lanthanide-based bimetallic coordination, resolving critical limitations in oxygen reduction reaction (ORR) catalysis. Combined experimental characterization and theoretical simulations reveal that La/Ce dual-doping induces charge polarization to generate Pd<sup><i>δ</i>−</sup>-La/Ce<sup><i>δ</i>+</sup> active sites, synergistically optimizing the electronic structure via d-band center downshifting. This configuration weakens oxygen intermediate adsorption while enhancing structural integrity across thermal cycles. The optimized PdLaCe metallene delivers exceptional ORR performance, achieving a record half-wave potential of 0.903 V (vs. RHE) with negligible degradation (<6%) after 20,000 cycles, far surpassing commercial Pt/C benchmarks. Integrated into AEMFCs, it demonstrates a peak power density of 82.8 mW cm<sup>−2</sup> alongside unprecedented stability (0.8 V for 22 h). Fundamental insights into lanthanide-induced charge redistribution establish a universal paradigm for designing robust multimetallic electrocatalysts via rare earth coordination engineering, bridging critical gaps between functional optimization and industrial-scale fuel cell applications. This work provides transformative strategies for next-generation energy conversion systems requiring high efficiency and ultra-stability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 10\",\"pages\":\"3607 - 3617\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3626-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3626-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
开发耐用的电催化剂,克服活性-稳定性的妥协,是推进阴离子交换膜燃料电池(aemfc)的关键。在此,我们通过镧系双金属配位设计了稀土掺杂的pd基金属烯(PdLaCe),解决了氧还原反应(ORR)催化的关键限制。结合实验表征和理论模拟表明,La/Ce双掺杂诱导电荷极化生成Pdδ−-La/Ceδ+活性位点,通过d波段中心降移协同优化电子结构。这种结构削弱了氧中间体的吸附,同时增强了整个热循环的结构完整性。经过优化的PdLaCe金属烯具有卓越的ORR性能,在20,000次循环后,达到创纪录的0.903 V(相对于RHE)半波电位,可忽略下降(<6%),远远超过商业Pt/C基准。集成到aemfc中,它显示出82.8 mW cm - 2的峰值功率密度以及前所未有的稳定性(0.8 V, 22小时)。镧系元素诱导电荷再分配的基本见解为通过稀土配位工程设计强大的多金属电催化剂建立了一个通用范例,弥合了功能优化与工业规模燃料电池应用之间的关键差距。这项工作为需要高效率和超稳定的下一代能量转换系统提供了变革性的策略。
The development of durable electrocatalysts overcoming activity-stability compromises remains pivotal for advancing anion-exchange membrane fuel cells (AEMFCs). Herein, we engineer a rare earth-incorporated Pd-based metallene (PdLaCe) through lanthanide-based bimetallic coordination, resolving critical limitations in oxygen reduction reaction (ORR) catalysis. Combined experimental characterization and theoretical simulations reveal that La/Ce dual-doping induces charge polarization to generate Pdδ−-La/Ceδ+ active sites, synergistically optimizing the electronic structure via d-band center downshifting. This configuration weakens oxygen intermediate adsorption while enhancing structural integrity across thermal cycles. The optimized PdLaCe metallene delivers exceptional ORR performance, achieving a record half-wave potential of 0.903 V (vs. RHE) with negligible degradation (<6%) after 20,000 cycles, far surpassing commercial Pt/C benchmarks. Integrated into AEMFCs, it demonstrates a peak power density of 82.8 mW cm−2 alongside unprecedented stability (0.8 V for 22 h). Fundamental insights into lanthanide-induced charge redistribution establish a universal paradigm for designing robust multimetallic electrocatalysts via rare earth coordination engineering, bridging critical gaps between functional optimization and industrial-scale fuel cell applications. This work provides transformative strategies for next-generation energy conversion systems requiring high efficiency and ultra-stability.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.