U6+激活窄带绿色荧光粉,用于超宽色域背光

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kaixiang Zhang  (, ), Xinyu Zhang  (, ), Lin Huang  (, ), Shuxing Li  (, ), Rong-Jun Xie  (, )
{"title":"U6+激活窄带绿色荧光粉,用于超宽色域背光","authors":"Kaixiang Zhang \n (,&nbsp;),&nbsp;Xinyu Zhang \n (,&nbsp;),&nbsp;Lin Huang \n (,&nbsp;),&nbsp;Shuxing Li \n (,&nbsp;),&nbsp;Rong-Jun Xie \n (,&nbsp;)","doi":"10.1007/s40843-025-3517-3","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid crystal display (LCD) technology faces challenges in achieving a wide color gamut due to the limitations of conventional green phosphors, such as their low color purity and complex synthesis processes. This study reports a novel narrow-band green-emitting phosphor, Li<sub>4</sub>WO<sub>5</sub>:U<sup>6+</sup>, which uses uranium as the luminescent center through a ligand-to-metal charge transfer (LMCT) mechanism. Under 450 nm blue excitation, the phosphor exhibits a sharp emission peak at 525 nm with a narrow full width at half maximum (FWHM) of 35 nm, achieving both high color purity and a quantum efficiency of 60%. The weak electron-phonon coupling results in spectral sharpness dominated by zero-phonon lines, while its structural robustness ensures exceptional thermal stability. When combined with a K<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> red phosphor and a blue InGaN light-emitting diode (LED) chip, the fabricated white LED demonstrates an expansive color gamut of 110.2% NTSC, significantly outperforming commercial β-Sialon:Eu<sup>2+</sup>-based white LED devices (84.4% NTSC). These findings indicate that Li<sub>4</sub>WO<sub>5</sub>:U<sup>6+</sup> is a highly promising candidate for next-generation wide-color-gamut LCD backlighting, offering superior vividness and stability for advanced display applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3541 - 3548"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U6+-activated narrow-band green phosphor for super-wide color gamut backlighting\",\"authors\":\"Kaixiang Zhang \\n (,&nbsp;),&nbsp;Xinyu Zhang \\n (,&nbsp;),&nbsp;Lin Huang \\n (,&nbsp;),&nbsp;Shuxing Li \\n (,&nbsp;),&nbsp;Rong-Jun Xie \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3517-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liquid crystal display (LCD) technology faces challenges in achieving a wide color gamut due to the limitations of conventional green phosphors, such as their low color purity and complex synthesis processes. This study reports a novel narrow-band green-emitting phosphor, Li<sub>4</sub>WO<sub>5</sub>:U<sup>6+</sup>, which uses uranium as the luminescent center through a ligand-to-metal charge transfer (LMCT) mechanism. Under 450 nm blue excitation, the phosphor exhibits a sharp emission peak at 525 nm with a narrow full width at half maximum (FWHM) of 35 nm, achieving both high color purity and a quantum efficiency of 60%. The weak electron-phonon coupling results in spectral sharpness dominated by zero-phonon lines, while its structural robustness ensures exceptional thermal stability. When combined with a K<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> red phosphor and a blue InGaN light-emitting diode (LED) chip, the fabricated white LED demonstrates an expansive color gamut of 110.2% NTSC, significantly outperforming commercial β-Sialon:Eu<sup>2+</sup>-based white LED devices (84.4% NTSC). These findings indicate that Li<sub>4</sub>WO<sub>5</sub>:U<sup>6+</sup> is a highly promising candidate for next-generation wide-color-gamut LCD backlighting, offering superior vividness and stability for advanced display applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 10\",\"pages\":\"3541 - 3548\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3517-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3517-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于传统绿色荧光粉的颜色纯度低、合成工艺复杂等限制,液晶显示技术在实现宽色域方面面临挑战。本研究报道了一种新型窄带绿色发光荧光粉Li4WO5:U6+,该荧光粉以铀为发光中心,通过配体到金属电荷转移(LMCT)机制发光。在450nm蓝光激发下,该荧光粉在525nm处呈现出一个尖锐的发射峰,半峰宽(FWHM)为35nm,具有较高的色纯度和60%的量子效率。弱电子-声子耦合导致光谱锐度以零声子线为主,而其结构坚固性确保了出色的热稳定性。当与K2SiF6:Mn4+红色荧光粉和蓝色InGaN发光二极管(LED)芯片结合时,制备的白光LED显示出110.2% NTSC的广阔色域,显著优于商用β-Sialon:Eu2+白光LED器件(84.4% NTSC)。这些发现表明,Li4WO5:U6+是下一代宽色域LCD背光的极有前途的候选者,为先进的显示应用提供了卓越的生动性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
U6+-activated narrow-band green phosphor for super-wide color gamut backlighting

Liquid crystal display (LCD) technology faces challenges in achieving a wide color gamut due to the limitations of conventional green phosphors, such as their low color purity and complex synthesis processes. This study reports a novel narrow-band green-emitting phosphor, Li4WO5:U6+, which uses uranium as the luminescent center through a ligand-to-metal charge transfer (LMCT) mechanism. Under 450 nm blue excitation, the phosphor exhibits a sharp emission peak at 525 nm with a narrow full width at half maximum (FWHM) of 35 nm, achieving both high color purity and a quantum efficiency of 60%. The weak electron-phonon coupling results in spectral sharpness dominated by zero-phonon lines, while its structural robustness ensures exceptional thermal stability. When combined with a K2SiF6:Mn4+ red phosphor and a blue InGaN light-emitting diode (LED) chip, the fabricated white LED demonstrates an expansive color gamut of 110.2% NTSC, significantly outperforming commercial β-Sialon:Eu2+-based white LED devices (84.4% NTSC). These findings indicate that Li4WO5:U6+ is a highly promising candidate for next-generation wide-color-gamut LCD backlighting, offering superior vividness and stability for advanced display applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信