具有增强电催化析氧活性的CoNiFe-PBA中空结构的可控自模板合成

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Songtao Zhang  (, ), Yong Chen  (, ), Tao Pan  (, ), Ying Wei  (, ), Yong Li  (, ), Zixia Lin  (, ), Yecan Pi  (, ), Shuai Cao  (, ), Yijian Tang  (, ), Yongbin Hu  (, ), Mingbo Zheng  (, ), Huan Pang  (, )
{"title":"具有增强电催化析氧活性的CoNiFe-PBA中空结构的可控自模板合成","authors":"Songtao Zhang \n (,&nbsp;),&nbsp;Yong Chen \n (,&nbsp;),&nbsp;Tao Pan \n (,&nbsp;),&nbsp;Ying Wei \n (,&nbsp;),&nbsp;Yong Li \n (,&nbsp;),&nbsp;Zixia Lin \n (,&nbsp;),&nbsp;Yecan Pi \n (,&nbsp;),&nbsp;Shuai Cao \n (,&nbsp;),&nbsp;Yijian Tang \n (,&nbsp;),&nbsp;Yongbin Hu \n (,&nbsp;),&nbsp;Mingbo Zheng \n (,&nbsp;),&nbsp;Huan Pang \n (,&nbsp;)","doi":"10.1007/s40843-025-3492-6","DOIUrl":null,"url":null,"abstract":"<div><p>The microstructure and composition of electrocatalysts play a crucial role in determining their oxygen evolution reaction (OER) performance. Herein, we report a controlled self-template synthesis of hollow CoNiFe Prussian blue analogues (PBAs) and their phosphide derivatives with enhanced OER activity. Cobalt-nickel basic acetates with tunable metal ratios were first synthesized via a solvothermal method, followed by anion exchange with potassium hexacyanoferrate to form CoNiFe-PBAs, and subsequent phosphorization to obtain hollow CoNiFe phosphides (CoNiFe-PBA-Ps). Among these, the Co<sub>3</sub>Ni<sub>1</sub>Fe composition exhibits an optimal combination of reduced particle size and hollow architecture, resulting in more exposed active sites and increased electrolyte accessibility. The final Co<sub>3</sub>Ni<sub>1</sub>Fe-PBA-P displays a low overpotential of 273 mV at 10 mA cm<sup>−2</sup> and a Tafel slope of 59 mV dec<sup>−1</sup>, outperforming other Co<sub><i>x</i></sub>Ni<sub><i>y</i></sub>Fe-PBA-Ps and many reported Co, Ni, Fe-based electrocatalysts. DFT calculations confirm that the improved activity stems from the lower energy barriers of the key OER intermediates. This work provides a versatile strategy to design multi-metallic hollow nanostructures with small particle size, offering new insights into the development of high-performance electrocatalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3667 - 3674"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled self-template synthesis of CoNiFe-PBA hollow structure with enhanced electrocatalytic oxygen evolution reaction activity\",\"authors\":\"Songtao Zhang \\n (,&nbsp;),&nbsp;Yong Chen \\n (,&nbsp;),&nbsp;Tao Pan \\n (,&nbsp;),&nbsp;Ying Wei \\n (,&nbsp;),&nbsp;Yong Li \\n (,&nbsp;),&nbsp;Zixia Lin \\n (,&nbsp;),&nbsp;Yecan Pi \\n (,&nbsp;),&nbsp;Shuai Cao \\n (,&nbsp;),&nbsp;Yijian Tang \\n (,&nbsp;),&nbsp;Yongbin Hu \\n (,&nbsp;),&nbsp;Mingbo Zheng \\n (,&nbsp;),&nbsp;Huan Pang \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3492-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The microstructure and composition of electrocatalysts play a crucial role in determining their oxygen evolution reaction (OER) performance. Herein, we report a controlled self-template synthesis of hollow CoNiFe Prussian blue analogues (PBAs) and their phosphide derivatives with enhanced OER activity. Cobalt-nickel basic acetates with tunable metal ratios were first synthesized via a solvothermal method, followed by anion exchange with potassium hexacyanoferrate to form CoNiFe-PBAs, and subsequent phosphorization to obtain hollow CoNiFe phosphides (CoNiFe-PBA-Ps). Among these, the Co<sub>3</sub>Ni<sub>1</sub>Fe composition exhibits an optimal combination of reduced particle size and hollow architecture, resulting in more exposed active sites and increased electrolyte accessibility. The final Co<sub>3</sub>Ni<sub>1</sub>Fe-PBA-P displays a low overpotential of 273 mV at 10 mA cm<sup>−2</sup> and a Tafel slope of 59 mV dec<sup>−1</sup>, outperforming other Co<sub><i>x</i></sub>Ni<sub><i>y</i></sub>Fe-PBA-Ps and many reported Co, Ni, Fe-based electrocatalysts. DFT calculations confirm that the improved activity stems from the lower energy barriers of the key OER intermediates. This work provides a versatile strategy to design multi-metallic hollow nanostructures with small particle size, offering new insights into the development of high-performance electrocatalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 10\",\"pages\":\"3667 - 3674\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3492-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3492-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化剂的微观结构和组成对其析氧性能起着至关重要的作用。在此,我们报道了一种具有增强OER活性的空心CoNiFe普鲁士蓝类似物(PBAs)及其磷化衍生物的可控自模板合成。首先通过溶剂热法合成了金属比例可调的钴镍碱式醋酸盐,然后与六氰高铁酸钾阴离子交换形成CoNiFe- pbas,随后磷酸化得到空心CoNiFe磷化物(CoNiFe- pba - ps)。其中,Co3Ni1Fe的组成表现出减小粒径和中空结构的最佳组合,从而导致更多的活性位点暴露,提高了电解质的可及性。最终的Co3Ni1Fe-PBA-P在10 mA cm−2下的过电位为273 mV, Tafel斜率为59 mV dec−1,优于其他co3ni1fe - pba - ps和许多已报道的Co, Ni, fe基电催化剂。DFT计算证实,活性的提高源于关键OER中间体较低的能垒。这项工作为设计小粒径的多金属空心纳米结构提供了一种通用策略,为高性能电催化剂的开发提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlled self-template synthesis of CoNiFe-PBA hollow structure with enhanced electrocatalytic oxygen evolution reaction activity

The microstructure and composition of electrocatalysts play a crucial role in determining their oxygen evolution reaction (OER) performance. Herein, we report a controlled self-template synthesis of hollow CoNiFe Prussian blue analogues (PBAs) and their phosphide derivatives with enhanced OER activity. Cobalt-nickel basic acetates with tunable metal ratios were first synthesized via a solvothermal method, followed by anion exchange with potassium hexacyanoferrate to form CoNiFe-PBAs, and subsequent phosphorization to obtain hollow CoNiFe phosphides (CoNiFe-PBA-Ps). Among these, the Co3Ni1Fe composition exhibits an optimal combination of reduced particle size and hollow architecture, resulting in more exposed active sites and increased electrolyte accessibility. The final Co3Ni1Fe-PBA-P displays a low overpotential of 273 mV at 10 mA cm−2 and a Tafel slope of 59 mV dec−1, outperforming other CoxNiyFe-PBA-Ps and many reported Co, Ni, Fe-based electrocatalysts. DFT calculations confirm that the improved activity stems from the lower energy barriers of the key OER intermediates. This work provides a versatile strategy to design multi-metallic hollow nanostructures with small particle size, offering new insights into the development of high-performance electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信