碱金属修饰的硒化铋储氢第一性原理研究

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-08-12 DOI:10.1039/D5YA00149H
Asma Kiran, Saleh S. Alarfaji, Muhammad Bilal Tahir and Muhammad Isa Khan
{"title":"碱金属修饰的硒化铋储氢第一性原理研究","authors":"Asma Kiran, Saleh S. Alarfaji, Muhammad Bilal Tahir and Muhammad Isa Khan","doi":"10.1039/D5YA00149H","DOIUrl":null,"url":null,"abstract":"<p >The identification of novel two-dimensional materials is often highly valued because of their extraordinary characteristics and prospective uses. This study presents a new bismuth selenide (Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small>) monolayer based on density functional theory (DFT). Its bandgap, state density, and mobilities are determined and examined. This study investigates hydrogen storage in Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> adorned with alkali metal (Li/Na and K) atoms. The optimal adsorption site for alkali metal (AM) atoms on the Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> monolayer is located above an Se atom. The AM atoms are physically adsorbed on Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small>, and the electronic charge shifts from these to the Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> monolayer. In all scenarios examined, hydrogen molecules are physically adsorbed onto AM–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> complexes, suggesting that these systems could be employed for hydrogen storage. The K–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> monolayer shows the highest hydrogen storage capacity, with one potassium atom adsorbing up to 19 hydrogen molecules, while both Na–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> and Li–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> could adsorb 18 hydrogen molecules. It is estimated that the hydrogen-storage gravimetric capacities of AM–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> are within the US-DOE criteria, where the adatom coverage reaches about 6.71 wt% for K, 6.52 wt% for Na, and 6.66 wt% for Li.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 1251-1266"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00149h?page=search","citationCount":"0","resultStr":"{\"title\":\"First principles study of alkali metal-decorated bismuth selenide for hydrogen storage applications\",\"authors\":\"Asma Kiran, Saleh S. Alarfaji, Muhammad Bilal Tahir and Muhammad Isa Khan\",\"doi\":\"10.1039/D5YA00149H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The identification of novel two-dimensional materials is often highly valued because of their extraordinary characteristics and prospective uses. This study presents a new bismuth selenide (Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small>) monolayer based on density functional theory (DFT). Its bandgap, state density, and mobilities are determined and examined. This study investigates hydrogen storage in Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> adorned with alkali metal (Li/Na and K) atoms. The optimal adsorption site for alkali metal (AM) atoms on the Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> monolayer is located above an Se atom. The AM atoms are physically adsorbed on Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small>, and the electronic charge shifts from these to the Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> monolayer. In all scenarios examined, hydrogen molecules are physically adsorbed onto AM–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> complexes, suggesting that these systems could be employed for hydrogen storage. The K–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> monolayer shows the highest hydrogen storage capacity, with one potassium atom adsorbing up to 19 hydrogen molecules, while both Na–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> and Li–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> could adsorb 18 hydrogen molecules. It is estimated that the hydrogen-storage gravimetric capacities of AM–Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> are within the US-DOE criteria, where the adatom coverage reaches about 6.71 wt% for K, 6.52 wt% for Na, and 6.66 wt% for Li.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 10\",\"pages\":\" 1251-1266\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00149h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00149h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00149h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于其非凡的特性和潜在的用途,新型二维材料的鉴定往往受到高度重视。基于密度泛函理论(DFT)提出了一种新的硒化铋(Bi2Se3)单分子膜。它的带隙、态密度和迁移率被确定和检查。本文研究了碱金属(Li/Na和K)修饰Bi2Se3的储氢性能。碱金属(AM)在Bi2Se3单分子膜上的最佳吸附位置位于Se原子上方。AM原子被物理吸附在Bi2Se3上,电子电荷从这些原子转移到Bi2Se3单层上。在所有测试的场景中,氢分子被物理吸附到AM-Bi2Se3复合物上,这表明这些系统可以用于储氢。K-Bi2Se3单层储氢容量最大,一个钾原子可吸附19个氢分子,而Na-Bi2Se3和Li-Bi2Se3单层均可吸附18个氢分子。据估计,AM-Bi2Se3的储氢重量容量符合US-DOE标准,其中K的配原子覆盖率约为6.71 wt%, Na为6.52 wt%, Li为6.66 wt%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First principles study of alkali metal-decorated bismuth selenide for hydrogen storage applications

First principles study of alkali metal-decorated bismuth selenide for hydrogen storage applications

The identification of novel two-dimensional materials is often highly valued because of their extraordinary characteristics and prospective uses. This study presents a new bismuth selenide (Bi2Se3) monolayer based on density functional theory (DFT). Its bandgap, state density, and mobilities are determined and examined. This study investigates hydrogen storage in Bi2Se3 adorned with alkali metal (Li/Na and K) atoms. The optimal adsorption site for alkali metal (AM) atoms on the Bi2Se3 monolayer is located above an Se atom. The AM atoms are physically adsorbed on Bi2Se3, and the electronic charge shifts from these to the Bi2Se3 monolayer. In all scenarios examined, hydrogen molecules are physically adsorbed onto AM–Bi2Se3 complexes, suggesting that these systems could be employed for hydrogen storage. The K–Bi2Se3 monolayer shows the highest hydrogen storage capacity, with one potassium atom adsorbing up to 19 hydrogen molecules, while both Na–Bi2Se3 and Li–Bi2Se3 could adsorb 18 hydrogen molecules. It is estimated that the hydrogen-storage gravimetric capacities of AM–Bi2Se3 are within the US-DOE criteria, where the adatom coverage reaches about 6.71 wt% for K, 6.52 wt% for Na, and 6.66 wt% for Li.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信