w型槽结构对超疏水表面聚结诱导液滴跳跃的影响

IF 2.1 3区 工程技术 Q3 MECHANICS
XianMing Gao, XiaoSong Ren, WenXuan Yang, YanLong Zhang, YuHan Li
{"title":"w型槽结构对超疏水表面聚结诱导液滴跳跃的影响","authors":"XianMing Gao,&nbsp;XiaoSong Ren,&nbsp;WenXuan Yang,&nbsp;YanLong Zhang,&nbsp;YuHan Li","doi":"10.1007/s11012-025-02011-4","DOIUrl":null,"url":null,"abstract":"<p>The coalescence-induced droplet jumping phenomenon on superhydrophobic surfaces has been demonstrated to have significant potential in chip-related applications, including efficient heat dissipation, enhanced corrosion resistance, and effective anti-icing performance. The current research landscape on superhydrophobic surfaces predominantly focuses on single-groove or convex configurations for droplet jumping behavior, which exhibit limited efficacy in enhancing energy conversion efficiency. In this study, a W-shaped groove structure comprising dual V-grooves was designed on superhydrophobic surfaces, with optimal parameters determined through experimental optimization. This configuration achieved a maximum droplet jumping velocity of <i>V* j</i> = 0.65 and an energy conversion efficiency of <i>η</i> = 35.04%, representing an 8.76-fold improvement over conventional flat superhydrophobic surfaces. Numerical simulations revealed that the dual-groove geometry and central convexity of the W-shaped structure reduced droplet coalescence time and amplified energy conversion efficiency. Additionally, the influence of W-shaped grooves on asymmetric droplet coalescence-induced jumping was systematically investigated. These results provide a theoretical framework for advancing surface engineering in condensation heat transfer, defrosting, and corrosion prevention applications.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 9","pages":"2837 - 2852"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-025-02011-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of coalescence-induced droplet jumping by W-shaped groove structures on superhydrophobic surfaces\",\"authors\":\"XianMing Gao,&nbsp;XiaoSong Ren,&nbsp;WenXuan Yang,&nbsp;YanLong Zhang,&nbsp;YuHan Li\",\"doi\":\"10.1007/s11012-025-02011-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coalescence-induced droplet jumping phenomenon on superhydrophobic surfaces has been demonstrated to have significant potential in chip-related applications, including efficient heat dissipation, enhanced corrosion resistance, and effective anti-icing performance. The current research landscape on superhydrophobic surfaces predominantly focuses on single-groove or convex configurations for droplet jumping behavior, which exhibit limited efficacy in enhancing energy conversion efficiency. In this study, a W-shaped groove structure comprising dual V-grooves was designed on superhydrophobic surfaces, with optimal parameters determined through experimental optimization. This configuration achieved a maximum droplet jumping velocity of <i>V* j</i> = 0.65 and an energy conversion efficiency of <i>η</i> = 35.04%, representing an 8.76-fold improvement over conventional flat superhydrophobic surfaces. Numerical simulations revealed that the dual-groove geometry and central convexity of the W-shaped structure reduced droplet coalescence time and amplified energy conversion efficiency. Additionally, the influence of W-shaped grooves on asymmetric droplet coalescence-induced jumping was systematically investigated. These results provide a theoretical framework for advancing surface engineering in condensation heat transfer, defrosting, and corrosion prevention applications.</p>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"60 9\",\"pages\":\"2837 - 2852\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-025-02011-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-025-02011-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-02011-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

超疏水表面聚结诱导的液滴跳跃现象在芯片相关应用中具有巨大的潜力,包括高效散热、增强耐腐蚀性和有效的防冰性能。目前对超疏水表面的研究主要集中在液滴跳跃行为的单沟槽或凸结构上,这些结构在提高能量转换效率方面的效果有限。本研究在超疏水表面设计了双v型槽组成的w型槽结构,并通过实验优化确定了最优参数。该结构的最大液滴跳跃速度为V* j = 0.65,能量转换效率为η = 35.04%,比常规平面超疏水表面提高了8.76倍。数值模拟结果表明,w型结构的双槽几何形状和中心凸性缩短了液滴聚结时间,提高了能量转换效率。此外,还系统地研究了w型凹槽对非对称液滴聚结诱导跳跃的影响。这些结果为推进表面工程在冷凝传热、除霜和防腐方面的应用提供了理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of coalescence-induced droplet jumping by W-shaped groove structures on superhydrophobic surfaces

The coalescence-induced droplet jumping phenomenon on superhydrophobic surfaces has been demonstrated to have significant potential in chip-related applications, including efficient heat dissipation, enhanced corrosion resistance, and effective anti-icing performance. The current research landscape on superhydrophobic surfaces predominantly focuses on single-groove or convex configurations for droplet jumping behavior, which exhibit limited efficacy in enhancing energy conversion efficiency. In this study, a W-shaped groove structure comprising dual V-grooves was designed on superhydrophobic surfaces, with optimal parameters determined through experimental optimization. This configuration achieved a maximum droplet jumping velocity of V* j = 0.65 and an energy conversion efficiency of η = 35.04%, representing an 8.76-fold improvement over conventional flat superhydrophobic surfaces. Numerical simulations revealed that the dual-groove geometry and central convexity of the W-shaped structure reduced droplet coalescence time and amplified energy conversion efficiency. Additionally, the influence of W-shaped grooves on asymmetric droplet coalescence-induced jumping was systematically investigated. These results provide a theoretical framework for advancing surface engineering in condensation heat transfer, defrosting, and corrosion prevention applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信