阐明钙钛矿基水分解装置的降解途径

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wooyong Jeong, , , Chang-Seop Jeong, , , Juwon Yun, , , Young Sun Park, , , Junwoo Lee, , , Jeongyoub Lee, , , Chan Uk Lee, , , Subin Moon, , , Soobin Lee, , , Sumin Kim, , , Jun Hwan Kim, , , Sang Yeop Park, , , Donghyun Kim, , , Seonyoo Kim, , , Jaeeon Lim, , , Jeongjun Lee, , , Hyein An, , and , Jooho Moon*, 
{"title":"阐明钙钛矿基水分解装置的降解途径","authors":"Wooyong Jeong,&nbsp;, ,&nbsp;Chang-Seop Jeong,&nbsp;, ,&nbsp;Juwon Yun,&nbsp;, ,&nbsp;Young Sun Park,&nbsp;, ,&nbsp;Junwoo Lee,&nbsp;, ,&nbsp;Jeongyoub Lee,&nbsp;, ,&nbsp;Chan Uk Lee,&nbsp;, ,&nbsp;Subin Moon,&nbsp;, ,&nbsp;Soobin Lee,&nbsp;, ,&nbsp;Sumin Kim,&nbsp;, ,&nbsp;Jun Hwan Kim,&nbsp;, ,&nbsp;Sang Yeop Park,&nbsp;, ,&nbsp;Donghyun Kim,&nbsp;, ,&nbsp;Seonyoo Kim,&nbsp;, ,&nbsp;Jaeeon Lim,&nbsp;, ,&nbsp;Jeongjun Lee,&nbsp;, ,&nbsp;Hyein An,&nbsp;, and ,&nbsp;Jooho Moon*,&nbsp;","doi":"10.1021/acsenergylett.5c02009","DOIUrl":null,"url":null,"abstract":"<p >Despite recent encapsulation strategies that suppress moisture-induced degradation and support high-performance operation, perovskite-based water splitting devices still exhibit limited operational stability. This instability originates from the slower consumption of photocarriers, compared with photovoltaic (PV) cells, which exacerbates charge accumulation at the catalyst/electrolyte interface. Herein, <i>in situ</i> and <i>ex situ</i> studies track how this intense charge buildup governs a distinct degradation pathway in water splitting anodes relative to encapsulated perovskite PV cells. Our observations show that the anodes undergo a charge-induced failure process: accelerated iodine migration triggers defect formation at the hole transport layer/perovskite interface located directly beneath the electrochemically active region. In contrast, encapsulated PV cells experience light-induced degradation within the illuminated area, where defects emerge only after extended operation and at the electron transport layer/perovskite interface. These results clarify that perovskite-based water splitting devices follow a distinct, electrochemically driven degradation mechanism, providing insights for designing more stable perovskite-based electrochemical systems.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 10","pages":"4758–4768"},"PeriodicalIF":18.2000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating Degradation Pathways in Perovskite-Based Water Splitting Devices\",\"authors\":\"Wooyong Jeong,&nbsp;, ,&nbsp;Chang-Seop Jeong,&nbsp;, ,&nbsp;Juwon Yun,&nbsp;, ,&nbsp;Young Sun Park,&nbsp;, ,&nbsp;Junwoo Lee,&nbsp;, ,&nbsp;Jeongyoub Lee,&nbsp;, ,&nbsp;Chan Uk Lee,&nbsp;, ,&nbsp;Subin Moon,&nbsp;, ,&nbsp;Soobin Lee,&nbsp;, ,&nbsp;Sumin Kim,&nbsp;, ,&nbsp;Jun Hwan Kim,&nbsp;, ,&nbsp;Sang Yeop Park,&nbsp;, ,&nbsp;Donghyun Kim,&nbsp;, ,&nbsp;Seonyoo Kim,&nbsp;, ,&nbsp;Jaeeon Lim,&nbsp;, ,&nbsp;Jeongjun Lee,&nbsp;, ,&nbsp;Hyein An,&nbsp;, and ,&nbsp;Jooho Moon*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c02009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite recent encapsulation strategies that suppress moisture-induced degradation and support high-performance operation, perovskite-based water splitting devices still exhibit limited operational stability. This instability originates from the slower consumption of photocarriers, compared with photovoltaic (PV) cells, which exacerbates charge accumulation at the catalyst/electrolyte interface. Herein, <i>in situ</i> and <i>ex situ</i> studies track how this intense charge buildup governs a distinct degradation pathway in water splitting anodes relative to encapsulated perovskite PV cells. Our observations show that the anodes undergo a charge-induced failure process: accelerated iodine migration triggers defect formation at the hole transport layer/perovskite interface located directly beneath the electrochemically active region. In contrast, encapsulated PV cells experience light-induced degradation within the illuminated area, where defects emerge only after extended operation and at the electron transport layer/perovskite interface. These results clarify that perovskite-based water splitting devices follow a distinct, electrochemically driven degradation mechanism, providing insights for designing more stable perovskite-based electrochemical systems.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 10\",\"pages\":\"4758–4768\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c02009\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c02009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管最近的封装策略抑制了水分引起的降解并支持高性能操作,但钙钛矿基水分解装置仍然表现出有限的操作稳定性。与光伏(PV)电池相比,这种不稳定性源于光载流子的消耗较慢,这加剧了催化剂/电解质界面的电荷积累。在此,原位和非原位研究追踪了这种强烈的电荷积聚如何控制相对于封装钙钛矿光伏电池的水分解阳极中的独特降解途径。我们的观察表明,阳极经历了一个电荷诱导的失效过程:加速的碘迁移触发了位于电化学活性区正下方的空穴传输层/钙钛矿界面上的缺陷形成。相比之下,封装的PV电池在照明区域内经历光诱导降解,其中缺陷仅在长时间运行后和电子传输层/钙钛矿界面处出现。这些结果表明,钙钛矿基水分解装置遵循一种独特的电化学驱动降解机制,为设计更稳定的钙钛矿基电化学系统提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidating Degradation Pathways in Perovskite-Based Water Splitting Devices

Elucidating Degradation Pathways in Perovskite-Based Water Splitting Devices

Despite recent encapsulation strategies that suppress moisture-induced degradation and support high-performance operation, perovskite-based water splitting devices still exhibit limited operational stability. This instability originates from the slower consumption of photocarriers, compared with photovoltaic (PV) cells, which exacerbates charge accumulation at the catalyst/electrolyte interface. Herein, in situ and ex situ studies track how this intense charge buildup governs a distinct degradation pathway in water splitting anodes relative to encapsulated perovskite PV cells. Our observations show that the anodes undergo a charge-induced failure process: accelerated iodine migration triggers defect formation at the hole transport layer/perovskite interface located directly beneath the electrochemically active region. In contrast, encapsulated PV cells experience light-induced degradation within the illuminated area, where defects emerge only after extended operation and at the electron transport layer/perovskite interface. These results clarify that perovskite-based water splitting devices follow a distinct, electrochemically driven degradation mechanism, providing insights for designing more stable perovskite-based electrochemical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信