具有可调节表面粘附的背粘复合固体电解质在固态钠金属电池中实现增强的界面动力学和稳定性

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dongrong Yang, , , Huangkai Zhou, , , Baowen Wang, , , Kun Ren, , , Pan Liu, , , Yingjie Zhou, , , Da Zhang, , , Shengping Hou, , , Fupeng Li, , , Minjie Hou, , , Yongqing Cai, , , Haijun Wu, , , Bin Yang, , and , Feng Liang*, 
{"title":"具有可调节表面粘附的背粘复合固体电解质在固态钠金属电池中实现增强的界面动力学和稳定性","authors":"Dongrong Yang,&nbsp;, ,&nbsp;Huangkai Zhou,&nbsp;, ,&nbsp;Baowen Wang,&nbsp;, ,&nbsp;Kun Ren,&nbsp;, ,&nbsp;Pan Liu,&nbsp;, ,&nbsp;Yingjie Zhou,&nbsp;, ,&nbsp;Da Zhang,&nbsp;, ,&nbsp;Shengping Hou,&nbsp;, ,&nbsp;Fupeng Li,&nbsp;, ,&nbsp;Minjie Hou,&nbsp;, ,&nbsp;Yongqing Cai,&nbsp;, ,&nbsp;Haijun Wu,&nbsp;, ,&nbsp;Bin Yang,&nbsp;, and ,&nbsp;Feng Liang*,&nbsp;","doi":"10.1021/acsenergylett.5c01155","DOIUrl":null,"url":null,"abstract":"<p >Achieving intimate interfacial contact and dendrite suppression at electrolyte interfaces is critical in order for solid-state sodium-metal batteries (SSSBs) to become next-generation energy storage systems. Herein, a surface adhesion regulation strategy using a Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> (NASICON)–polymer hybrid approach is introduced to design laminated hybrid solid electrolytes (LHSEs) with asymmetric rigid-adhesive surfaces. This design simultaneously enhances interfacial kinetics at the cathode and improves anode stability. Experiments and DFT calculations show that a new NASICON–polymer interface phase reduces the energy barrier for Na<sup>+</sup> transport, enhancing ion migration efficiency. The optimized SEs5040, comprising 50% NASICON and 40% NASICON hybrid solid electrolyte (HSE) heterogeneous layers, exhibits a critical current density of 1.5 mA cm<sup>–2</sup>, and the Na/SEs5040/Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cell retains 86.2% capacity after 1795 cycles at 2 C. These findings offer insights into optimizing interfacial contacts and suppressing dendrites in SSSBs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 10","pages":"4777–4786"},"PeriodicalIF":18.2000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back-Adhesive Hybrid Solid Electrolyte with Regulated Surface Adhesion Realizing Enhanced Interfacial Kinetics and Stability in Solid-State Sodium Metal Batteries\",\"authors\":\"Dongrong Yang,&nbsp;, ,&nbsp;Huangkai Zhou,&nbsp;, ,&nbsp;Baowen Wang,&nbsp;, ,&nbsp;Kun Ren,&nbsp;, ,&nbsp;Pan Liu,&nbsp;, ,&nbsp;Yingjie Zhou,&nbsp;, ,&nbsp;Da Zhang,&nbsp;, ,&nbsp;Shengping Hou,&nbsp;, ,&nbsp;Fupeng Li,&nbsp;, ,&nbsp;Minjie Hou,&nbsp;, ,&nbsp;Yongqing Cai,&nbsp;, ,&nbsp;Haijun Wu,&nbsp;, ,&nbsp;Bin Yang,&nbsp;, and ,&nbsp;Feng Liang*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c01155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving intimate interfacial contact and dendrite suppression at electrolyte interfaces is critical in order for solid-state sodium-metal batteries (SSSBs) to become next-generation energy storage systems. Herein, a surface adhesion regulation strategy using a Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> (NASICON)–polymer hybrid approach is introduced to design laminated hybrid solid electrolytes (LHSEs) with asymmetric rigid-adhesive surfaces. This design simultaneously enhances interfacial kinetics at the cathode and improves anode stability. Experiments and DFT calculations show that a new NASICON–polymer interface phase reduces the energy barrier for Na<sup>+</sup> transport, enhancing ion migration efficiency. The optimized SEs5040, comprising 50% NASICON and 40% NASICON hybrid solid electrolyte (HSE) heterogeneous layers, exhibits a critical current density of 1.5 mA cm<sup>–2</sup>, and the Na/SEs5040/Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cell retains 86.2% capacity after 1795 cycles at 2 C. These findings offer insights into optimizing interfacial contacts and suppressing dendrites in SSSBs.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 10\",\"pages\":\"4777–4786\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01155\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01155","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了使固态钠金属电池(SSSBs)成为下一代储能系统,在电解质界面上实现紧密的界面接触和枝晶抑制至关重要。本文介绍了一种利用Na3Zr2Si2PO12 (NASICON) -聚合物杂化方法的表面粘附调节策略,用于设计具有非对称刚性粘附表面的层状杂化固体电解质(LHSEs)。这种设计同时提高了阴极的界面动力学和阳极的稳定性。实验和DFT计算表明,新的nasicon -聚合物界面相降低了Na+输运的能垒,提高了离子迁移效率。优化后的SEs5040由50%的NASICON和40%的NASICON混合固体电解质(HSE)非均质层组成,其临界电流密度为1.5 mA cm-2,并且Na/SEs5040/Na3V2(PO4)3电池在2c下循环1795次后仍保持86.2%的容量。这些研究结果为优化SSSBs的界面接触和抑制枝晶提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Back-Adhesive Hybrid Solid Electrolyte with Regulated Surface Adhesion Realizing Enhanced Interfacial Kinetics and Stability in Solid-State Sodium Metal Batteries

Back-Adhesive Hybrid Solid Electrolyte with Regulated Surface Adhesion Realizing Enhanced Interfacial Kinetics and Stability in Solid-State Sodium Metal Batteries

Achieving intimate interfacial contact and dendrite suppression at electrolyte interfaces is critical in order for solid-state sodium-metal batteries (SSSBs) to become next-generation energy storage systems. Herein, a surface adhesion regulation strategy using a Na3Zr2Si2PO12 (NASICON)–polymer hybrid approach is introduced to design laminated hybrid solid electrolytes (LHSEs) with asymmetric rigid-adhesive surfaces. This design simultaneously enhances interfacial kinetics at the cathode and improves anode stability. Experiments and DFT calculations show that a new NASICON–polymer interface phase reduces the energy barrier for Na+ transport, enhancing ion migration efficiency. The optimized SEs5040, comprising 50% NASICON and 40% NASICON hybrid solid electrolyte (HSE) heterogeneous layers, exhibits a critical current density of 1.5 mA cm–2, and the Na/SEs5040/Na3V2(PO4)3 cell retains 86.2% capacity after 1795 cycles at 2 C. These findings offer insights into optimizing interfacial contacts and suppressing dendrites in SSSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信