工程确定性,可调谐和可逆折叠石墨烯与使用超快激光微图案可拉伸聚合物衬底

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ana Florencia Juarez Saborio, , , Florent Bourquard, , , Riccardo Galafassi, , , Arnaud Claudel, , , Laëtitia Marty, , , Agnès Piednoir, , , Matthieu Mercury, , , Rémy Fulcrand, , , Clément Albin, , , Vincent Barnier, , , Florence Garrelie, , , Alfonso San-Miguel, , and , Fabien Vialla*, 
{"title":"工程确定性,可调谐和可逆折叠石墨烯与使用超快激光微图案可拉伸聚合物衬底","authors":"Ana Florencia Juarez Saborio,&nbsp;, ,&nbsp;Florent Bourquard,&nbsp;, ,&nbsp;Riccardo Galafassi,&nbsp;, ,&nbsp;Arnaud Claudel,&nbsp;, ,&nbsp;Laëtitia Marty,&nbsp;, ,&nbsp;Agnès Piednoir,&nbsp;, ,&nbsp;Matthieu Mercury,&nbsp;, ,&nbsp;Rémy Fulcrand,&nbsp;, ,&nbsp;Clément Albin,&nbsp;, ,&nbsp;Vincent Barnier,&nbsp;, ,&nbsp;Florence Garrelie,&nbsp;, ,&nbsp;Alfonso San-Miguel,&nbsp;, and ,&nbsp;Fabien Vialla*,&nbsp;","doi":"10.1021/acsanm.5c03221","DOIUrl":null,"url":null,"abstract":"<p >The unique atomic monolayer structure of graphene gives rise to a broad range of remarkable mechanical folding properties. However, significant challenges remain in effectively harnessing them in a controllable and scalable manner. In this study, we introduce an innovative approach that employs micron-scale cavities, fabricated through ultrafast laser patterning, in a stretchable polymer substrate to locally modulate adhesion and strain transfer to a graphene monolayer. This technique enables the deterministic induction of single folds in graphene with fold dimensions, width and height in the hundreds of nanometers, tunable through the geometry of the polymer cavities and the applied strain. Importantly, these folds are reversible, returning to a flat morphology with minimal structural damage, as confirmed by Raman spectroscopy. Additionally, our method allows for the creation of fields of folds with reproducible periodicity, defining clear potential for practical applications. These findings pave the way for the development of advanced devices that would leverage the strain and morphology-sensitive properties of graphene.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 40","pages":"19301–19309"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Deterministic, Tunable, and Reversible Folds in Graphene with the Use of Ultrafast Laser Micro-Patterned Stretchable Polymer Substrate\",\"authors\":\"Ana Florencia Juarez Saborio,&nbsp;, ,&nbsp;Florent Bourquard,&nbsp;, ,&nbsp;Riccardo Galafassi,&nbsp;, ,&nbsp;Arnaud Claudel,&nbsp;, ,&nbsp;Laëtitia Marty,&nbsp;, ,&nbsp;Agnès Piednoir,&nbsp;, ,&nbsp;Matthieu Mercury,&nbsp;, ,&nbsp;Rémy Fulcrand,&nbsp;, ,&nbsp;Clément Albin,&nbsp;, ,&nbsp;Vincent Barnier,&nbsp;, ,&nbsp;Florence Garrelie,&nbsp;, ,&nbsp;Alfonso San-Miguel,&nbsp;, and ,&nbsp;Fabien Vialla*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The unique atomic monolayer structure of graphene gives rise to a broad range of remarkable mechanical folding properties. However, significant challenges remain in effectively harnessing them in a controllable and scalable manner. In this study, we introduce an innovative approach that employs micron-scale cavities, fabricated through ultrafast laser patterning, in a stretchable polymer substrate to locally modulate adhesion and strain transfer to a graphene monolayer. This technique enables the deterministic induction of single folds in graphene with fold dimensions, width and height in the hundreds of nanometers, tunable through the geometry of the polymer cavities and the applied strain. Importantly, these folds are reversible, returning to a flat morphology with minimal structural damage, as confirmed by Raman spectroscopy. Additionally, our method allows for the creation of fields of folds with reproducible periodicity, defining clear potential for practical applications. These findings pave the way for the development of advanced devices that would leverage the strain and morphology-sensitive properties of graphene.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 40\",\"pages\":\"19301–19309\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03221\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03221","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯独特的原子单层结构产生了广泛的显著的机械折叠性能。然而,在以可控和可扩展的方式有效利用它们方面仍然存在重大挑战。在这项研究中,我们介绍了一种创新的方法,即在可拉伸的聚合物衬底中使用微米尺度的空腔,通过超快激光图图化制造,局部调节粘附和应变转移到石墨烯单层。该技术能够在石墨烯中确定地诱导出单个褶皱,褶皱的尺寸、宽度和高度在数百纳米,可以通过聚合物腔的几何形状和施加的应变进行调节。重要的是,正如拉曼光谱所证实的那样,这些褶皱是可逆的,可以以最小的结构损伤恢复到平坦的形态。此外,我们的方法允许创建具有可重复周期性的褶皱场,为实际应用定义了明确的潜力。这些发现为开发先进设备铺平了道路,这些设备将利用石墨烯的应变和形态敏感特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Deterministic, Tunable, and Reversible Folds in Graphene with the Use of Ultrafast Laser Micro-Patterned Stretchable Polymer Substrate

Engineering Deterministic, Tunable, and Reversible Folds in Graphene with the Use of Ultrafast Laser Micro-Patterned Stretchable Polymer Substrate

The unique atomic monolayer structure of graphene gives rise to a broad range of remarkable mechanical folding properties. However, significant challenges remain in effectively harnessing them in a controllable and scalable manner. In this study, we introduce an innovative approach that employs micron-scale cavities, fabricated through ultrafast laser patterning, in a stretchable polymer substrate to locally modulate adhesion and strain transfer to a graphene monolayer. This technique enables the deterministic induction of single folds in graphene with fold dimensions, width and height in the hundreds of nanometers, tunable through the geometry of the polymer cavities and the applied strain. Importantly, these folds are reversible, returning to a flat morphology with minimal structural damage, as confirmed by Raman spectroscopy. Additionally, our method allows for the creation of fields of folds with reproducible periodicity, defining clear potential for practical applications. These findings pave the way for the development of advanced devices that would leverage the strain and morphology-sensitive properties of graphene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信