Frances E. Bugden, Andrew D. Bage, Ashima Bajaj, Bin Wang, Fiona J. Gibson, Henry Stone, Yingjian Xu, Frank De Proft, Mercedes Alonso, Mark D. Greenhalgh
{"title":"钌催化叠氮化物-硒代炔环加成:区域选择性范围、机理和来源的合成-计算联合研究","authors":"Frances E. Bugden, Andrew D. Bage, Ashima Bajaj, Bin Wang, Fiona J. Gibson, Henry Stone, Yingjian Xu, Frank De Proft, Mercedes Alonso, Mark D. Greenhalgh","doi":"10.1002/adsc.70096","DOIUrl":null,"url":null,"abstract":"A ruthenium-catalyzed azide–alkyne cycloaddition (RuAAC) reaction involving selenoalkynes is reported for the synthesis of selenium-substituted 1,2,3-triazole products (26 examples, up to 89% yield). The reaction works well with a wide range of alkyl and aryl azides bearing both electron-donating and -withdrawing groups. This contrasts RuAAC reactions using regular terminal and internal alkynes, where aryl azides bearing electron-withdrawing groups are not generally tolerated. The regioselectivity of the cycloaddition is highly dependent on the identity of the non-selenium substituent of the alkyne. This challenges earlier reports on RuAAC reactions involving thioalkynes and questions the perceived understanding of the regioselectivity of these reactions. Computational modeling of the reaction profiles for four alkyne substrates that provided contrasting regioselectivities accurately reproduces the experimental results. The observed regioselectivity is primarily attributed to the relative nucleophilicity of the alkyne carbons upon coordination to ruthenium and an approach is proposed in which reaction regioselectivity may be predicted.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"85 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ruthenium-Catalyzed Azide-Selenoalkyne Cycloadditions: A Combined Synthetic–Computational Study into Reaction Scope, Mechanism, and Origins of Regioselectivity\",\"authors\":\"Frances E. Bugden, Andrew D. Bage, Ashima Bajaj, Bin Wang, Fiona J. Gibson, Henry Stone, Yingjian Xu, Frank De Proft, Mercedes Alonso, Mark D. Greenhalgh\",\"doi\":\"10.1002/adsc.70096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ruthenium-catalyzed azide–alkyne cycloaddition (RuAAC) reaction involving selenoalkynes is reported for the synthesis of selenium-substituted 1,2,3-triazole products (26 examples, up to 89% yield). The reaction works well with a wide range of alkyl and aryl azides bearing both electron-donating and -withdrawing groups. This contrasts RuAAC reactions using regular terminal and internal alkynes, where aryl azides bearing electron-withdrawing groups are not generally tolerated. The regioselectivity of the cycloaddition is highly dependent on the identity of the non-selenium substituent of the alkyne. This challenges earlier reports on RuAAC reactions involving thioalkynes and questions the perceived understanding of the regioselectivity of these reactions. Computational modeling of the reaction profiles for four alkyne substrates that provided contrasting regioselectivities accurately reproduces the experimental results. The observed regioselectivity is primarily attributed to the relative nucleophilicity of the alkyne carbons upon coordination to ruthenium and an approach is proposed in which reaction regioselectivity may be predicted.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.70096\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.70096","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Ruthenium-Catalyzed Azide-Selenoalkyne Cycloadditions: A Combined Synthetic–Computational Study into Reaction Scope, Mechanism, and Origins of Regioselectivity
A ruthenium-catalyzed azide–alkyne cycloaddition (RuAAC) reaction involving selenoalkynes is reported for the synthesis of selenium-substituted 1,2,3-triazole products (26 examples, up to 89% yield). The reaction works well with a wide range of alkyl and aryl azides bearing both electron-donating and -withdrawing groups. This contrasts RuAAC reactions using regular terminal and internal alkynes, where aryl azides bearing electron-withdrawing groups are not generally tolerated. The regioselectivity of the cycloaddition is highly dependent on the identity of the non-selenium substituent of the alkyne. This challenges earlier reports on RuAAC reactions involving thioalkynes and questions the perceived understanding of the regioselectivity of these reactions. Computational modeling of the reaction profiles for four alkyne substrates that provided contrasting regioselectivities accurately reproduces the experimental results. The observed regioselectivity is primarily attributed to the relative nucleophilicity of the alkyne carbons upon coordination to ruthenium and an approach is proposed in which reaction regioselectivity may be predicted.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.